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1 Introduction
The central role of the resolvent cubic in the solution of the quartic was first
appreciated by Leonard Euler (1707–1783). Euler’s quartic solution first appeared
as a brief section (§ 5) in a paper on roots of equations [1, 2], and was later
expanded into a chapter entitled Of a new method of resolving equations of the
fourth degree (§§ 773–783) in his Elements of algebra [3, 4].

Euler’s quartic solution was an important advance, in which he showed that
each of the roots of a reduced quartic can be represented as the sum of three
square roots, say ±√r1 ±

√
r2 ±

√
r3, where the ri (i = 1, 2, 3) are the roots of

a resolvent cubic. A quartic equation in x is said to be reduced if the coefficient
of x3 is zero. This can always be achieved by a simple change of variable.

Motivated by the recent tercentenary of Euler’s birth, this article describes
the geometric basis underlying both the ri and the sign of the product √r1r2r3,
these being two key aspects of Euler’s solution. Finally, we reveal the beautiful
dynamic between Euler’s resolvent cubic and the quartic invariants G,H, I, J
[5, 6, 7], and propose a new class of algebraic object.

2 Geometric basis for the ri
A significant property of the reduced quartic equation is that the four roots
can be completely defined using only three parameters. For example, let zj
(j = 1, 2, 3, 4) be the roots (see Figure 1) of a reduced quartic equation,

Z(x) ≡ ax4 + px2 + qx+ r = 0. (1)

As the sum of the roots is zero (the coefficient of the cubic term is zero), it
follows that we can define the points midway between z1, z2 and z3, z4 as ±g.
Let z2 − z1 = 2α and z4 − z3 = 2β. The four roots can then be expressed as
follows: {

z1, z2 = −g ± α,
z3, z4 = +g ± β.
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Since specifying one pair of quartic roots necessarily defines the remaining pair,
there are just three different ways of allocating the pairs of roots, each associated
with its own g, α, β, the inter-relationship between which lies at the heart of a
remarkable symmetry which underpins the solution of the quartic. For example
if, with no loss of generality, we let
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Figure 1:

 z3 + z4 = 2g1,
z3 + z1 = 2g2,
z3 + z2 = 2g3,

(2)

then
2(g2 + g3) = 2z3 + z1 + z2,

= (z1 + z2 + z3 + z4) + z3 − z4,
= z3 − z4 = −2β1,

and similarly
2(g2 − g3) = z1 − z2 = −2α1,

and hence {
α1 = −(g2 − g3),
β1 = −(g2 + g3).

Thus the αk, βk (k = 1, 2, 3) are actually simple functions of the gi (i 6= k) such
that each of the four roots zj can be expressed as a function of the gi alone, as
follows: 

z1 = −g1 − α1 = −g1 + (g2 − g3) = −g1 + g2 − g3,
z2 = −g1 + α1 = −g1 − (g2 − g3) = −g1 − g2 + g3,
z3 = +g1 − β1 = +g1 + (g2 + g3) = +g1 + g2 + g3,
z4 = +g1 + β1 = +g1 − (g2 + g3) = +g1 − g2 − g3.

(3)

Thus Euler’s ri are the same as the g2
i .

3 Euler’s resolvent cubic
Using these observations we can reconstruct a given reduced quartic equation,
say (1), which then leads to a resolvent cubic and hence to the solution. Let the
roots of Z(x) = 0 be −g ± α and g ± β (Figure 1).

Z(x) ≡ {x− (−g − α)}{x− (−g + α)}{x− (g − β)}{x− (g + β)} = 0.

Expanding and letting A = g2 − α2 and B = g2 − β2, gives

x4 + (−4g2 +A+B)x2 + (2g)(B −A)x+AB = 0.
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We can eliminate α, β by first equating coefficients with the monic form of (1)
giving  p/a = −4g2 +A+B,

q/a = 2g(B −A),
r/a = AB,

and then eliminating A and B (using the identity 4AB = 2A× 2B), which gen-
erates a resolvent sextic in g, the roots of which are the six values ±g1,±g2,±g3.
The substitution g2 7→ x then generates Euler’s original resolvent cubic [1, 2, 3,
4]

R(x) ≡ x3 + p

2a
x2 +

(
p2 − 4ar

16a2

)
x− q2

64a2 = 0, (4)

whose roots ri are therefore g2
1 , g

2
2 , g

2
3 . The four roots of the reduced quartic

Z(x) = 0 are among the eight possible values of ±√r1±
√
r2±
√
r3; but in order

to determine which four they are we need a way of allocating the signs correctly.
Euler, using a monic quartic of the form x4 − lx2 −mx − n = 0, says he

resolved the sign problem by noting that √r1r2r3 = m/8, as follows [3, § 773]:

. . . But it is to be observed, that the product . . . √r1r2r3, must be
equal to m/8, and that if m/8 be positive, the product of the terms√
r1,
√
r2,
√
r3, must likewise be positive;

Unfortunately Euler did not elaborate further on this, but the key to under-
standing the sign problem is not difficult to find, since from (2) we have

8g1g2g3 = (z3 + z4)(z3 + z1)(z3 + z2),
= z3

3 + z2
3(z1 + z2 + z4) + z3(z2z1 + z2z4 + z1z4) + z4z1z2.

Now z1 + z2 + z4 = −z3 (since Σzj = 0), hence

8g1g2g3 = z1z2z3 + z2z3z4 + z3z4z1 + z4z1z2, (5)

and so 8g1g2g3 is actually one of the four elementary symmetric functions of the
roots zj . Its value is therefore equal to −1× the coefficient of the x-term of the
monic form of the reduced quartic equation Z(x) = 0, and so we have

8
√
r1r2r3 = 8g1g2g3 = −q/a,

which is equivalent to Euler’s √r1r2r3 = m/8.

4 Geometric basis for the sign of √r1r2r3
A useful way of ‘seeing’ the quartic algebra at work is to express the coefficients
in terms of the key ‘visible’ parameters ε, yNz, yNz′ shown in Figure 2, as follows:
Let F (X) be a quartic polynomial with real coefficients (a 6= 0)

F (X) ≡ aX4 + bX3 + cX2 + dX + e, (6)

with invariants [6, p. 76]
G = b3 + 8a2d− 4abc,
H = 8ac− 3b2,
I = 12ae− 3bd+ c2,
J = 72ace+ 9bcd− 27ad2 − 27eb2 − 2c3.

(7)
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Figure 2:
The reduced quartic Z(x), turning points (T1, T2, T3), points of inflection
(I1, I2), and first differential Z′(x). The x-coordinates of the points of
inflection are ±ε. The curves intersect the y-axis at points Nz and Nz′ .

Let its reduced form Z(x) be generated by the translation
x 7→ X −XNf , where XNf = −b/(4a). Using Taylor’s theorem we have

Z(x) ≡ F (x+XNf ) = ax4 +
F ′′(XNf )

2
x2 + F ′(XNf )x+ F (XNf ). (8)

If Z(x) and Z ′(x) intersect the y-axis in points Nz and Nz′ respectively, then
(8) can be expressed as

Z(x) ≡ ax4 − 6aε2x2 + yNz′x+ yNz (9)

where (see (4) and Figures 2, 3)

ε2 = (3b2 − 8ac)
48a2 ≡ −H

48a2 ≡
−p
6a
,

yNz = F (XNf ) ≡
I

12a
− 3H2

482a3 ≡ r,

y
Nz′

= F ′(XNf ) ≡
G

8a2 ≡ q,

−12aε2 = F ′′(XNf ).

(10)

Expressing the reduced quartic Z(x) in this form (Equation 9) greatly facilitates
visualisation, since we can now ‘see’ how the configuration of the curves Z(x)
and Z ′(x) is related to the coefficients. For example (assuming a > 0), if the
x2 term is positive then ε is complex (ε2 < 0), and so the quartic will have two
complex points of inflection and hence only one real turning point (cf. [10]).
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If xTi are the x-coordinates of the turning points of Z(x), then by differenti-
ating (9) we have (see Equation 5)

4xT1xT2xT3 =
−y

Nz′

a
= 8
√
r1r2r3, (11)

and hence the sign of √r1r2r3 is the same as that of −y
Nz′
/a and xT1xT2xT3. It

follows, therefore, that we can actually ‘see’ the correct sign of √r1r2r3 simply
by observing the signs of the abscissae of the turning points of the reduced
quartic, or by noting the location of Nz′ in relation to the abscissa.

For example (assuming a > 0), if the roots zj are such that the middle
turning point, T2, is to the left of the y-axis, then not only will y

Nz′
be negative

(Figure 2) but just two of the three xTi will be negative resulting in a positive
product for xT1xT2xT3, and hence √r1r2r3 will also be positive (see Equation 11).
Conversely, if the middle turning point is to the right of the y-axis, then yNz′
will be positive, and only one of the xTi will be negative making the product
xT1xT2xT3 negative.

5 Roots
As regards the roots zj of the reduced quartic Z(x), we can initially choose any
sign combination for the √ri, and then evaluate the sign of the product √r1r2r3.
If the sign of the product is the same as that of −y

Nz′
/a (see Equation 9) then

we have a valid combination of signs, and can proceed to determine the four zj
using (3). Otherwise, it is only necessary to change the sign of any one of the√
ri (say, √r1 → −

√
r1), and proceed as before using (3).

When the reduced quartic is symmetric about the y-axis one of the xTi will
be zero and hence the product √r1r2r3 is zero. However, the solution in this
case is trivial since Z(x) is then an even function as y

Nz′
is also zero.

6 Application
Since all resolvent cubics of the quartic can be transformed to a standard form
[9], typically expressed as [6, p. 77]

T (x) ≡ x3 − 3Ix+ J, (12)

we can solve any quartic by solving instead a simple reduced form of the
resolvent, say T (x) = 0, and then recover the roots of Euler’s resolvent using
the transformation which carries the reduced form back to R(x).

For example, the translation x 7→ x + xNr to reduce R(x), for which
x
Nr

= −p/(6a) ≡ ε2, generates the reduced form S(x), as follows:

S(x) ≡ R(x+ ε2) ≡ x3 − I

48a2x+ J

1728a3 . (13)

The substitution x 7→ x/(12a) then scales 1728a3S(x) to T (x), and hence if the
roots of S(x) = 0 and T (x) = 0 are si and ti respectively, then

ri = si + ε2 = ti
12a

+ ε2. (14)

This convenient approach is illustrated in Example 1.
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Figure 3:
Euler’s resolvent cubic R(x) with three real roots (h2

r > y2
Nr

, i.e. 4I3 > J2)
which are all positive (ε2 > 0, x2

Nr
> δ2

r). The conditions ε2 > 0, x2
Nr
< δ2

r

are associated with two negative roots (dashed curve). Note that G2,
H, I, J are constant multiples respectively of the resolvent’s geometric
parameters yP , xNr, δ

2
r , yNr (ρ1 = 642a6, ρ2 = 48a2, ρ3 = 1728a3, ρ4 = 12a).

The invariants I, J are readily visualised since any reduced cubic can be
expressed in terms of its geometric parameters δ and yN as in [8]

Ax3 − 3Aδ2x+ yN = 0. (15)

For example, equating coefficients between S(x), T (x) and the monic form of
(15), and noting that h = 2Aδ3 [8], shows that I, J are simply constant multiples
of δ2, yN as follows (Figure 3):

As = At = 1,
I = δ2

r(12a)2 = δ2
s(12a)2 = δ2

t ,

J = yNr(12a)3 = yNs(12a)3 = yNt,

4I3

J2 =
(
hr
y
Nr

)2
=
(
hs
y
Ns

)2
=
(
ht
y
Nt

)2
.

(16)

Thus each of these invariants has a visible geometric interpretation in relation to
Euler’s resolvent cubic, either as a position parameter with respect to the axes
(G,H, J), or as a shape parameter (I). For example, we can now see that the
condition J = 0 simply indicates that the N -point of the resolvent cubic lies on
the x-axis and all that that implies (see Example 2). Similarly, the condition
I = 0 indicates that the resolvent adopts the ‘cubic parabola’ form. Furthermore
y
P
≤ 0, which reveals how and why the resolvent cubic cannot have just a single

negative root. The syzygy −27G2 = H3−48a2IH+64a3J [6, p. 76] is generated
by substituting into S(x) the coordinates of P (H/(48a2),−G2/(642a6)).
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7 Euler’s cubic and the quartic root
configurations

A very significant but seemingly overlooked aspect of Euler’s resolvent cubic is
its beautiful and symmetric relationship with two important algebraic objects,
namely the discriminant 4I3 − J2 and the seminvariant H2 − 16a2I, the signs
of which distinguish between the various quartic root configurations [5, § 68;
6, p. 80; 7, p. 28]. Visualising the resolvent in relation to the invariants (Figure 3)
reveals the mechanisms, as follows:

4I3− J2

Since h = 2Aδ3 [8], it follows from (16) that
−(4I3 − J2)

126a6 = y2
Nr
− h2
r. (17)

Thus the quartic discriminant 4I3− J2 is simply a constant multiple of y2
Nr
− h2
r,

the sign of which reflects whether the x-axis lies between (y2
Nr
< h2

r), on (y2
Nr

= h2
r),

or outside (y2
Nr
> h2

r) the turning points of the resolvent cubic (Figure 3).

H2− 16a2I

The sign of this algebraic object distinguishes (when ε2 > 0) between the then two
possible quartic root configurations associated with the case 4I3−J2 > 0, namely
(a) four real roots (H2−16a2I > 0), and (b) four complex roots (H2−16a2I < 0)
[5, § 68]. Substituting for H (Equation 10) and I (Equation 16) gives

H2 − 16a2I = (−48a2ε2)2 − 16a2(122a2δ2
r) = 3244a4(ε4 − δ2

r).

But ε2 = xNr (Figure 3) and hence

H2 − 16a2I

3244a4 = x2
Nr
− δ2
r . (18)

Thus H2 − 16a2I is just a constant multiple of x2
Nr
− δ2
r , the sign of which

(when ε2 > 0) reflects whether the y-axis lies between (x2
Nr
< δ2
r), on (x2

Nr
= δ2
r),

or outside (x2
Nr
> δ2
r) the turning points of the resolvent cubic (cf. [6, p. 80,

proposition 7]).
For example (Figure 3), when a quartic with three real turning points (ε2 > 0)

has four real roots (4I3 − J2 > 0) Euler’s cubic R(x) has three positive real
roots—the y-axis lies outside the two turning points—and so x2

Nr
> δ2
r and hence

H2 − 16a2I > 0.
Conversely, when a quartic with three real turning points (ε2 > 0) has four

complex roots (4I3 − J2 > 0), R(x) then has exactly two negative real roots,
and so its turning point T ′ (Figure 3) lies to the left of the y-axis (x2

Nr
< δ2
r),

hence H2 − 16a2I < 0.

A new class of object?
Since H2 − 16a2I functions with regard to the y-axis in exactly the same way
that 4I3 − J2 functions with regard to the x-axis, I would like to suggest that
this pair of algebraic objects should be regarded as forming a distinct class of
object—thereby linking two previously unrelated algebraic quantities with a
single unifying concept.
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8 Example 1
Solve F (X) ≡ X4 − 11X3 + 41X2 − 61X + 30 = 0.

The key parameters are: a = 1, XNf = 11/4, YNf ′ = F ′(XNf ) = −15/8, I = 28,
J = −160, ε2 = 35/48. Using say, T (x), we solve 1

T (x) ≡ x3 − 84x− 160 = 0,

the three ti being −8,−2, 10. The √ri are therefore given by

√
r1 =

√
ε2 + t1

12a
=
√

35
48
− 8

12
= 1

4
,

√
r2 =

√
ε2 + t2

12a
=
√

35
48
− 2

12
= 3

4
,

√
r3 =

√
ε2 + t3

12a
=
√

35
48

+ 10
12

= 5
4
·

Since the sign of −YNf ′/a is positive then the product of the √ri must also be
positive—which it is. Finally, adding XNf recovers the quartic roots
(Xj = XNf ±

√
r1 ±

√
r2 ±

√
r3) using (3) as follows:

X1 = 11
4
− 1

4
+ 3

4
− 5

4
= 2,

X2 = 11
4
− 1

4
− 3

4
+ 5

4
= 3,

X3 = 11
4

+ 1
4

+ 3
4

+ 5
4

= 5,

X4 = 11
4

+ 1
4
− 3

4
− 5

4
= 1.

Even the solution of T (x) = 0 is greatly simplified since δ, h, yN are simple
functions of I and J (see Equation 16). For example, T (x) = 0 has three real
roots in this case since (yNt/ht)

2 ≡ J2/(4I3) ≤ 1 [8].

9 Example 2
Explain the significance of J = 0, I > 0, for a quartic with four real roots.

The condition J = 0 implies that Euler’s resolvent cubic has its N -point on
the x-axis (Figure 3), and hence it has three roots in arithmetic progression. If
also I > 0 (resolvent cubic has two real turning points), then the resolvent’s roots
are distinct and (with the root at infinity) form a harmonic range. Since the
roots of the parent quartic have the same cross-ratio they also form a harmonic
range.

1Note that we could instead solve S(x) = 0, and then use ri = ε2 + si (see Equation 14).
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