patch-2.3.48 linux/arch/ia64/lib/copy_user.S
Next file: linux/arch/mips/Makefile
Previous file: linux/arch/ia64/kernel/unaligned.c
Back to the patch index
Back to the overall index
- Lines: 443
- Date:
Thu Feb 24 10:14:29 2000
- Orig file:
v2.3.47/linux/arch/ia64/lib/copy_user.S
- Orig date:
Thu Feb 10 17:11:03 2000
diff -u --recursive --new-file v2.3.47/linux/arch/ia64/lib/copy_user.S linux/arch/ia64/lib/copy_user.S
@@ -1,71 +1,375 @@
-/*
- * This routine copies a linear memory buffer across the user/kernel boundary. When
- * reading a byte from the source causes a fault, the remainder of the destination
- * buffer is zeroed out. Note that this can happen only when copying from user
- * to kernel memory and we do this to absolutely guarantee that the
- * kernel doesn't operate on random data.
- *
- * This file is derived from arch/alpha/lib/copy_user.S.
- *
- * Inputs:
- * in0: address of destination buffer
- * in1: address of source buffer
- * in2: length of buffer in bytes
- * Outputs:
- * r8: number of bytes that didn't get copied due to a fault
- *
- * Copyright (C) 1999 Hewlett-Packard Co
- * Copyright (C) 1998, 1999 David Mosberger-Tang <davidm@hpl.hp.com>
- */
-
-#define EXI(x...) \
-99: x; \
+// The label comes first because our store instruction contains a comma
+// and confuse the preprocessor otherwise
+//
+#undef DEBUG
+#ifdef DEBUG
+#define EX(y,x...) \
+99: x
+#else
+#define EX(y,x...) \
.section __ex_table,"a"; \
- data4 @gprel(99b); \
- data4 .Lexit_in-99b; \
- .previous
+ data4 @gprel(99f); \
+ data4 y-99f; \
+ .previous; \
+99: x
+#endif
-#define EXO(x...) \
-99: x; \
- .section __ex_table,"a"; \
- data4 @gprel(99b); \
- data4 .Lexit_out-99b; \
- .previous
-
- .text
- .psr abi64
- .psr lsb
- .lsb
-
- .align 32
- .global __copy_user
- .proc __copy_user
+//
+// Tuneable parameters
+//
+#define COPY_BREAK 16 // we do byte copy below (must be >=16)
+#define PIPE_DEPTH 4 // pipe depth
+
+#define EPI p[PIPE_DEPTH-1] // PASTE(p,16+PIPE_DEPTH-1)
+
+//
+// arguments
+//
+#define dst in0
+#define src in1
+#define len in2
+
+//
+// local registers
+//
+#define cnt r18
+#define len2 r19
+#define saved_lc r20
+#define saved_pr r21
+#define tmp r22
+#define val r23
+#define src1 r24
+#define dst1 r25
+#define src2 r26
+#define dst2 r27
+#define len1 r28
+#define enddst r29
+#define endsrc r30
+#define saved_pfs r31
+ .text
+ .psr abi64
+ .psr lsb
+
+ .align 16
+ .global __copy_user
+ .proc __copy_user
__copy_user:
- alloc r10=ar.pfs,3,0,0,0
- mov r9=ar.lc // save ar.lc
- mov ar.lc=in2 // set ar.lc to length of buffer
- br.sptk.few .Lentr
-
- // XXX braindead copy loop---this needs to be optimized
-.Loop1:
- EXI(ld1 r8=[in1],1)
- ;;
- EXO(st1 [in0]=r8,1)
-.Lentr: br.cloop.dptk.few .Loop1 // repeat unless ar.lc--==0
- ;; // avoid RAW on ar.lc
-.Lexit_out:
- mov r8=ar.lc // return how many bytes we _didn't_ copy
- mov ar.lc=r9
- br.ret.sptk.few rp
-
-.Lexit_in:
- // clear the remainder of the buffer:
- mov r8=ar.lc // return how many bytes we _didn't_ copy
-.Loop2:
- st1 [in0]=r0,1 // this cannot fault because we get here only on user->kernel copies
- br.cloop.dptk.few .Loop2
- ;; // avoid RAW on ar.lc
- mov ar.lc=r9
- br.ret.sptk.few rp
+ alloc saved_pfs=ar.pfs,3,((2*PIPE_DEPTH+7)&~7),0,((2*PIPE_DEPTH+7)&~7)
+
+ .rotr val1[PIPE_DEPTH],val2[PIPE_DEPTH]
+ .rotp p[PIPE_DEPTH]
+
+ adds len2=-1,len // br.ctop is repeat/until
+ mov ret0=r0
+
+ ;; // RAW of cfm when len=0
+ cmp.eq p8,p0=r0,len // check for zero length
+ mov saved_lc=ar.lc // preserve ar.lc (slow)
+(p8) br.ret.spnt.few rp // empty mempcy()
+ ;;
+ add enddst=dst,len // first byte after end of source
+ add endsrc=src,len // first byte after end of destination
+ mov saved_pr=pr // preserve predicates
+
+ mov dst1=dst // copy because of rotation
+ mov ar.ec=PIPE_DEPTH
+ mov pr.rot=1<<16 // p16=true all others are false
+
+ mov src1=src // copy because of rotation
+ mov ar.lc=len2 // initialize lc for small count
+ cmp.lt p10,p7=COPY_BREAK,len // if len > COPY_BREAK then long copy
+
+ xor tmp=src,dst // same alignment test prepare
+(p10) br.cond.dptk.few long_memcpy
+ ;; // RAW pr.rot/p16 ?
+ //
+ // Now we do the byte by byte loop with software pipeline
+ //
+ // p7 is necessarily false by now
+1:
+ EX(failure_in_pipe1,(p16) ld1 val1[0]=[src1],1)
+
+ EX(failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
+ br.ctop.dptk.few 1b
+ ;;
+ mov ar.lc=saved_lc
+ mov pr=saved_pr,0xffffffffffff0000
+ mov ar.pfs=saved_pfs // restore ar.ec
+ br.ret.sptk.few rp // end of short memcpy
+
+ //
+ // Beginning of long mempcy (i.e. > 16 bytes)
+ //
+long_memcpy:
+ tbit.nz p6,p7=src1,0 // odd alignement
+ and tmp=7,tmp
+ ;;
+ cmp.eq p10,p8=r0,tmp
+ mov len1=len // copy because of rotation
+(p8) br.cond.dpnt.few 1b // XXX Fixme. memcpy_diff_align
+ ;;
+ // At this point we know we have more than 16 bytes to copy
+ // and also that both src and dest have the same alignment
+ // which may not be the one we want. So for now we must move
+ // forward slowly until we reach 16byte alignment: no need to
+ // worry about reaching the end of buffer.
+ //
+ EX(failure_in1,(p6) ld1 val1[0]=[src1],1) // 1-byte aligned
+(p6) adds len1=-1,len1;;
+ tbit.nz p7,p0=src1,1
+ ;;
+ EX(failure_in1,(p7) ld2 val1[1]=[src1],2) // 2-byte aligned
+(p7) adds len1=-2,len1;;
+ tbit.nz p8,p0=src1,2
+ ;;
+ //
+ // Stop bit not required after ld4 because if we fail on ld4
+ // we have never executed the ld1, therefore st1 is not executed.
+ //
+ EX(failure_in1,(p8) ld4 val2[0]=[src1],4) // 4-byte aligned
+ EX(failure_out,(p6) st1 [dst1]=val1[0],1)
+ tbit.nz p9,p0=src1,3
+ ;;
+ //
+ // Stop bit not required after ld8 because if we fail on ld8
+ // we have never executed the ld2, therefore st2 is not executed.
+ //
+ EX(failure_in1,(p9) ld8 val2[1]=[src1],8) // 8-byte aligned
+ EX(failure_out,(p7) st2 [dst1]=val1[1],2)
+(p8) adds len1=-4,len1
+ ;;
+ EX(failure_out, (p8) st4 [dst1]=val2[0],4)
+(p9) adds len1=-8,len1;;
+ shr.u cnt=len1,4 // number of 128-bit (2x64bit) words
+ ;;
+ EX(failure_out, (p9) st8 [dst1]=val2[1],8)
+ tbit.nz p6,p0=len1,3
+ cmp.eq p7,p0=r0,cnt
+ adds tmp=-1,cnt // br.ctop is repeat/until
+(p7) br.cond.dpnt.few .dotail // we have less than 16 bytes left
+ ;;
+ adds src2=8,src1
+ adds dst2=8,dst1
+ mov ar.lc=tmp
+ ;;
+ //
+ // 16bytes/iteration
+ //
+2:
+ EX(failure_in3,(p16) ld8 val1[0]=[src1],16)
+(p16) ld8 val2[0]=[src2],16
+
+ EX(failure_out, (EPI) st8 [dst1]=val1[PIPE_DEPTH-1],16)
+(EPI) st8 [dst2]=val2[PIPE_DEPTH-1],16
+ br.ctop.dptk.few 2b
+ ;; // RAW on src1 when fall through from loop
+ //
+ // Tail correction based on len only
+ //
+ // No matter where we come from (loop or test) the src1 pointer
+ // is 16 byte aligned AND we have less than 16 bytes to copy.
+ //
+.dotail:
+ EX(failure_in1,(p6) ld8 val1[0]=[src1],8) // at least 8 bytes
+ tbit.nz p7,p0=len1,2
+ ;;
+ EX(failure_in1,(p7) ld4 val1[1]=[src1],4) // at least 4 bytes
+ tbit.nz p8,p0=len1,1
+ ;;
+ EX(failure_in1,(p8) ld2 val2[0]=[src1],2) // at least 2 bytes
+ tbit.nz p9,p0=len1,0
+ ;;
+ EX(failure_out, (p6) st8 [dst1]=val1[0],8)
+ ;;
+ EX(failure_in1,(p9) ld1 val2[1]=[src1]) // only 1 byte left
+ mov ar.lc=saved_lc
+ ;;
+ EX(failure_out,(p7) st4 [dst1]=val1[1],4)
+ mov pr=saved_pr,0xffffffffffff0000
+ ;;
+ EX(failure_out, (p8) st2 [dst1]=val2[0],2)
+ mov ar.pfs=saved_pfs
+ ;;
+ EX(failure_out, (p9) st1 [dst1]=val2[1])
+ br.ret.dptk.few rp
+
+
+
+ //
+ // Here we handle the case where the byte by byte copy fails
+ // on the load.
+ // Several factors make the zeroing of the rest of the buffer kind of
+ // tricky:
+ // - the pipeline: loads/stores are not in sync (pipeline)
+ //
+ // In the same loop iteration, the dst1 pointer does not directly
+ // reflect where the faulty load was.
+ //
+ // - pipeline effect
+ // When you get a fault on load, you may have valid data from
+ // previous loads not yet store in transit. Such data must be
+ // store normally before moving onto zeroing the rest.
+ //
+ // - single/multi dispersal independence.
+ //
+ // solution:
+ // - we don't disrupt the pipeline, i.e. data in transit in
+ // the software pipeline will be eventually move to memory.
+ // We simply replace the load with a simple mov and keep the
+ // pipeline going. We can't really do this inline because
+ // p16 is always reset to 1 when lc > 0.
+ //
+failure_in_pipe1:
+ sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied
+1:
+(p16) mov val1[0]=r0
+(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1
+ br.ctop.dptk.few 1b
+ ;;
+ mov pr=saved_pr,0xffffffffffff0000
+ mov ar.lc=saved_lc
+ mov ar.pfs=saved_pfs
+ br.ret.dptk.few rp
+
+
+ //
+ // Here we handle the head & tail part when we check for alignment.
+ // The following code handles only the load failures. The
+ // main diffculty comes from the fact that loads/stores are
+ // scheduled. So when you fail on a load, the stores corresponding
+ // to previous successful loads must be executed.
+ //
+ // However some simplifications are possible given the way
+ // things work.
+ //
+ // 1) HEAD
+ // Theory of operation:
+ //
+ // Page A | Page B
+ // ---------|-----
+ // 1|8 x
+ // 1 2|8 x
+ // 4|8 x
+ // 1 4|8 x
+ // 2 4|8 x
+ // 1 2 4|8 x
+ // |1
+ // |2 x
+ // |4 x
+ //
+ // page_size >= 4k (2^12). (x means 4, 2, 1)
+ // Here we suppose Page A exists and Page B does not.
+ //
+ // As we move towards eight byte alignment we may encounter faults.
+ // The numbers on each page show the size of the load (current alignment).
+ //
+ // Key point:
+ // - if you fail on 1, 2, 4 then you have never executed any smaller
+ // size loads, e.g. failing ld4 means no ld1 nor ld2 executed
+ // before.
+ //
+ // This allows us to simplify the cleanup code, because basically you
+ // only have to worry about "pending" stores in the case of a failing
+ // ld8(). Given the way the code is written today, this means only
+ // worry about st2, st4. There we can use the information encapsulated
+ // into the predicates.
+ //
+ // Other key point:
+ // - if you fail on the ld8 in the head, it means you went straight
+ // to it, i.e. 8byte alignment within an unexisting page.
+ // Again this comes from the fact that if you crossed just for the the ld8 then
+ // you are 8byte aligned but also 16byte align, therefore you would
+ // either go for the 16byte copy loop OR the ld8 in the tail part.
+ // The combination ld1, ld2, ld4, ld8 where you fail on ld8 is impossible
+ // because it would mean you had 15bytes to copy in which case you
+ // would have defaulted to the byte by byte copy.
+ //
+ //
+ // 2) TAIL
+ // Here we now we have less than 16 bytes AND we are either 8 or 16 byte
+ // aligned.
+ //
+ // Key point:
+ // This means that we either:
+ // - are right on a page boundary
+ // OR
+ // - are at more than 16 bytes from a page boundary with
+ // at most 15 bytes to copy: no chance of crossing.
+ //
+ // This allows us to assume that if we fail on a load we haven't possibly
+ // executed any of the previous (tail) ones, so we don't need to do
+ // any stores. For instance, if we fail on ld2, this means we had
+ // 2 or 3 bytes left to copy and we did not execute the ld8 nor ld4.
+ //
+ // This means that we are in a situation similar the a fault in the
+ // head part. That's nice!
+ //
+failure_in1:
+// sub ret0=enddst,dst1 // number of bytes to zero, i.e. not copied
+// sub len=enddst,dst1,1
+ sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied
+ sub len=endsrc,src1,1
+ //
+ // we know that ret0 can never be zero at this point
+ // because we failed why trying to do a load, i.e. there is still
+ // some work to do.
+ // The failure_in1bis and length problem is taken care of at the
+ // calling side.
+ //
+ ;;
+failure_in1bis: // from (failure_in3)
+ mov ar.lc=len // Continue with a stupid byte store.
+ ;;
+5:
+ st1 [dst1]=r0,1
+ br.cloop.dptk.few 5b
+ ;;
+skip_loop:
+ mov pr=saved_pr,0xffffffffffff0000
+ mov ar.lc=saved_lc
+ mov ar.pfs=saved_pfs
+ br.ret.dptk.few rp
+
+ //
+ // Here we simply restart the loop but instead
+ // of doing loads we fill the pipeline with zeroes
+ // We can't simply store r0 because we may have valid
+ // data in transit in the pipeline.
+ // ar.lc and ar.ec are setup correctly at this point
+ //
+ // we MUST use src1/endsrc here and not dst1/enddst because
+ // of the pipeline effect.
+ //
+failure_in3:
+ sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied
+ ;;
+2:
+(p16) mov val1[0]=r0
+(p16) mov val2[0]=r0
+(EPI) st8 [dst1]=val1[PIPE_DEPTH-1],16
+(EPI) st8 [dst2]=val2[PIPE_DEPTH-1],16
+ br.ctop.dptk.few 2b
+ ;;
+ cmp.ne p6,p0=dst1,enddst // Do we need to finish the tail ?
+ sub len=enddst,dst1,1 // precompute len
+(p6) br.cond.dptk.few failure_in1bis
+ ;;
+ mov pr=saved_pr,0xffffffffffff0000
+ mov ar.lc=saved_lc
+ mov ar.pfs=saved_pfs
+ br.ret.dptk.few rp
+
+ //
+ // handling of failures on stores: that's the easy part
+ //
+failure_out:
+ sub ret0=enddst,dst1
+ mov pr=saved_pr,0xffffffffffff0000
+ mov ar.lc=saved_lc
+
+ mov ar.pfs=saved_pfs
+ br.ret.dptk.few rp
+
+
+ .endp __copy_user
- .endp __copy_user
FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)