
Hints for effective use of
the NLS Topo
GeoPackage
Users are adviced to use the manuals of the client programs as a primary
source when learning to use GeoPackage in the most effective way.
Those manuals are most up-to-date and they are written by authors who
know the specific details of their implementations. That GeoPackage is
an OGC standard guarantees that any client program can perform the
basic operations with GeoPackage but implementations differ and
thereafter also the best workflows.

The best resource for finding information about the GeoPackage
standard is the dedicated web site http://www.geopackage.org . That
site provides also links to the corresponding page on the OGC:n standard
site and to the GitHub-project that is the place where the development of
the future versions and extensions of the standard happens. The issue
tracker for the published parts of the standard is also in GitHub. Because
GeoPackage in built on top of SQLite the documentation
in https://sqlite.org/index.html is also relevant for GeoPackage
developers.

The purpose of the following advice is to help users to adopt
GeoPackage as a delivery media of the topographic database of the
National Land Survey of Finland. The document is based on experiences
from the initial tests of the NLS Topo GeoPackage in April 2020 and it is
provided as is.

General advice
1- Don’t add too many features into the map

Some tables of the NLS Topo GeoPackage are rather large. Table
”maastokuvionreuna” (borders of the terrain polygons) contains more
than 10 million linestrings, contour line layer ”korkeuskayra” has 6.8
million linestrings, and the building table ”rakennus” has 5.4 million
polygons. If any GIS software tries to open and render all the features
from so large tables on the map it will be slow. User should set a scale
limit for the large layers so that only reasonable number of features will
be rendered on the screen. Small tables do not need scale limits, but the
rendering of contour lines should be stopped about at scale 1:50000.
Scale limit approach is not good for the lake table ”jarvi”. It is probably
better to post-process the data by adding a new attribute to the table and
fill it with the areas of the lake polygons. This way it is possible to render
only the biggest lakes at small map scales.

2. Your software may not know how to use the spatial index

All the tables in the NLS Topo GeoPackage have spatial indexes. Spatial
index enables to select features fasts within a given bounding box.
However, the existence of the spatial index does not guarantee that
queries are getting any faster than without the index. The reason for this
is that the R*Tree index system is published as an extension to the
GeoPackage standard and client programs do not need to support it. If
you experience poor performance when using the largest NLS Topo
tables directly from the GeoPackage database it is better to convert data
into some other format that suits better for your software. The workflow is
then the same than when using the NLS Topo GML files. Advantage for a

http://www.geopackage.org/
http://www.geopackage.org/
https://sqlite.org/index.html
https://sqlite.org/index.html

user is that it is enough to download one GeoPackage file instead of
3000 GML files.

Software specific notes
ESRI products
ESRI ArcMap and ja ArcGIS Pro support GeoPackage best as a data
transfer format. Both programs can add layers directly from GeoPackage
into workspace but while this works fine for small tables a much better
performance is achieved if the largest tables are converted first into some
native ESRI format, for example File Geodatabase. GeoPackage layers
cannot be edited directly with ESRI products. However, it is possible to
edit layers in other formats and save the result into a new GeoPackage
database.

Source: ArcGIS-blog https://www.esri.com/arcgis-
blog/products/product/data-management/how-to-use-ogc-geopackages-
in-arcgis-pro/

MapInfo
MapInfo Pro and MapInfo Pro Advanced support reading, editing, and
creating GeoPackage feature tables.

Source https://www.geopackage.org/implementations.html

QGIS
QGIS is using GeoPackage as the default vector format since program
version 3.0. QGIS deals well even with the largest tables of the NLS Topo
GeoPackage, provided that user sets a scale limit that prevents rendering
too many features at small scales.

Source: https://qgis.org/fi/docs/index.html

FME
FME reads and writes GeoPackage. The required license version is
”Desktop Professional” or higher. FME version 2020.0 contains a few
useful improvements in the way how new GeoPackage databases are
created but also at least version 2018.2 creates GeoPackages which are
100% standard compliant.

Source: https://docs.safe.com/fme/html/FME_Desktop_Documentation/FME_ReadersWriters/ogcgeopackage/ogcgeopackage.htm

GDAL
GDAL-utility program ogr2ogr can be used for reading, editing, and
writing vector data in GeoPackage format. GDAL creates 100% standard
compliant results. GeoPackages which are created with GDAL contain an
additional metadata table that helps QGIS program to make the initial
loading of layers faster. This additional table does not have any effect on
other GeoPackage readers. Everything that can be done with the ogr2ogr
executable is also possible to implement programmatically by utilizing the
GDAL library and the language bindings that are available for C++, C#,
Python, and Java.

Source: https://gdal.org/drivers/vector/gpkg.html

GeoServer
GeoServer can use GeoPackage as a performant data source for WMS
and WFS services.

Source: https://docs.geoserver.org/latest/en/user/data/vector/geopkg.html

https://www.esri.com/arcgis-blog/products/product/data-management/how-to-use-ogc-geopackages-in-arcgis-pro/
https://www.esri.com/arcgis-blog/products/product/data-management/how-to-use-ogc-geopackages-in-arcgis-pro/
https://www.esri.com/arcgis-blog/products/product/data-management/how-to-use-ogc-geopackages-in-arcgis-pro/
https://www.esri.com/arcgis-blog/products/product/data-management/how-to-use-ogc-geopackages-in-arcgis-pro/
https://www.geopackage.org/implementations.html
https://www.geopackage.org/implementations.html
https://qgis.org/fi/docs/index.html
https://qgis.org/fi/docs/index.html
https://docs.safe.com/fme/html/FME_Desktop_Documentation/FME_ReadersWriters/ogcgeopackage/ogcgeopackage.htm
https://docs.safe.com/fme/html/FME_Desktop_Documentation/FME_ReadersWriters/ogcgeopackage/ogcgeopackage.htm
https://docs.safe.com/fme/html/FME_Desktop_Documentation/FME_ReadersWriters/ogcgeopackage/ogcgeopackage.htm
https://gdal.org/drivers/vector/gpkg.html
https://gdal.org/drivers/vector/gpkg.html
https://docs.geoserver.org/latest/en/user/data/vector/geopkg.html
https://docs.geoserver.org/latest/en/user/data/vector/geopkg.html
https://docs.geoserver.org/latest/en/user/data/vector/geopkg.html

MapServer
MapServer can use GeoPackage as a performant data source for WMS
and WFS services. The connection to GeoPackage is made through
GDAL/OGR.

Source: https://www.mapserver.org/input/vector/ogr.html

Notes about the speed of
GeoPackage database
GeoPackage is fundamentally just a normal SQLite database with partly
fixed structure. SQLite is a serverless database that is widely used and
fast, but like with all databases, queries from large tables without
appropriate indexes are slow. A few examples of SQL queries from the
NLS Tope GeoPackage follows.

Example 1. Selecting one feature by an unindexed attribute vs. by an
attribute with an index. The former query is 250 times slower.

SELECT * FROM rakennus WHERE fid=5000001;

Execution time: 0.032 sec

SELECT * FROM rakennus WHERE mtk_id=1150058247;

Execution time: 8.505 sec

Example 2. Selecting features within a 1 km x 1 km sized bounding box.
Query is finding 284 features out of 5462918. First version does not
utilize spatial index (R*Tree-index), the second version does use the
R*Tree index in a sub-query. First query version is 60 times slower.

Notice: The ST_Min/Max functions are not available in all environments
and implementations and their speeds differ.

SELECT * FROM rakennus

WHERE ST_MaxX(geom)>=633070 AND ST_MinX(geom)<=634070

AND ST_MaxY(geom)>=6826718 AND ST_MinY(geom)<=6827718;

Execution time: 8.468 sec

SELECT * FROM rakennus

WHERE fid IN

(SELECT id FROM rtree_rakennus_geom

 WHERE maxX>=633070 AND minX<=634070

 AND maxY>=6826718 AND minY<=6827718);

Execution time: 0.135 sec

Timings are measuring just the time that is needed for getting data out of
GeoPackage database. Programs are also doing a variable amount of
processing for rendering the data on a map and the speed that is
experienced by a user is slower.

https://www.mapserver.org/input/vector/ogr.html
https://www.mapserver.org/input/vector/ogr.html

Making GeoPackage database
smaller
If user do not need topographic data from the whole Finland of if some
tables which are included in the NLS Topo GeoPackage are unnecessary
it is possible to reduce the size of the database file by dropping tables or
by clipping data by a bounding box. This saves disk space but it is also
possible that programs which do not know how to utilize GeoPackage in
an optimal way will be faster.

Selecting tables and clipping data by bounding box
with FME Quick Translator
FME Quick Translator program has a graphical user interfase for
selecting which tables will be copied into a new GeoPackage. It is also
possible to define a clipping bounding box with minimum and maximum X
and Y coordinates. This example copies only buildings and constructions
which are located within the bounding box of the municipality of
Saarijärvi.

Selecting tables and clipping data by bounding box
with GDAL ogr2ogr program
This command creates a new GeoPackage database that contains the
buildings and constructions of Saarijärvi with an open source GDAL utility
program ogr2ogr.

ogr2ogr -f gpkg -spat 372400 6933200 433500 6976300

gdal_rakennus_leikattu.gpkg mtk.gpkg rakennus rakennelma

Dropping tables and compacting a GeoPackage
database
Deleting unnecessary tables from a GeoPackage database is freeing
space. Tables are deleted or dropped with a standard SQL statement
”DROP TABLE”. For dropping tables any SQLite client or method that can
used if it just can connect the database and execute SQL commands.
With an open source SQLite client ”DB Browser for SQLite” user do not
even need to know the SQL syntax but tables can be dropped by using
an entry from a menu that opens with a right-click.

Dropping tables from SQLite database makes the space free for other
needs but it does not make the physical file on disk any smaller. For
compacting the database and freeing disk space another SQL command
”VACUUM” must be fired. Also this task can be done with DB Browser
without knowing SQL.

User who prefers command line over GUI can drop tables and vacuum
the database with another GDAL utility ”ogrinfo”. It is worth noticing the
VACUUM is actually writing a new complete database file and with multi-
gigabyte databases the operation takes some time.

ogrinfo -sql "DROP TABLE niitty" mtkmaasto.gpkg
INFO: Open of `mtkmaasto.gpkg'
 using driver `GPKG' successful.

ogrinfo -sql "VACUUM" mtkmaasto.gpkg
INFO: Open of `mtkmaasto.gpkg'
 using driver `GPKG' successful.

Making attribute queries faster by
creating a new index
Let’s return to example 1 and the slow query that selects one feature by
attribute “mtk_id”. If there is a need to do these queries frequently user
can create a new attribute index with their favorite SQL client.

CREATE INDEX "rakennus_mtk_id_idx"
ON "rakennus"

("mtk_id");

Repeat the test and compare the speed

SELECT * FROM rakennus WHERE mtk_id=1150058247;
Execution time: 0.043 sec (was 8.505 sec)

