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The purpose of this cookbook is to help you run the dropseq tools responsible for determining
the donor of origin of cells, and detect doublet cell barcodes where cells from two donors have
been co-encapsulated.

This software supports both data processed by DropSeq software tools, as well as CellRanger
and STARSolo tools. With minor modifications many other software pipelines may be
accommodated.
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Preprocessing data from CellRanger or StarSolo

CellRanger and StarSolo emit reads that are very similar to, but not quite identical to DropSeq
alignment’s standard outputs. The two main differences are that DropSeq tools embed gene
annotation information directly on reads as bam tags for scRNASeq data, and the cell /
molecular barcode tag names are different. To process this data, we’ll apply a pre-processing
step to add in gene annotations, then during processing a few additional arguments will be
added to use the appropriate tags.

TagReadWithGeneFunction

TagReadWithGeneFunction (part of the DropSeq software distribution) directly adds tags to
BAM reads that indicate how each read interacts with gene models. This is useful to later
introspect reads and better understand why they were or were not considered for a particular
analysis. This tagging process and how the tags are interpreted are detailed in depth in the
Alignment Cookbook if you’re interested in further details. In order to make scRNASeq data
from other platforms compatible with DropSeq tools, the first step is to add those functional
annotations. Given a GTF file, this process is straightforward - the input BAM has the tags
added from a GTF or refFlat file, and a new BAM is emitted.

Unset

/path/to/dropseq_install/TagReadWithGeneFunction

-ANNOTATIONS_FILE /path/to/organism.gtf

-INPUT /path/to/cellranger_output/outs/possorted_genome_bam.bam
-OUTPUT /path/to/cellranger_output/outs/possorted_genome_bam_tagged.bam

This new tagged BAM will be used for all downstream processing. If you’re running the
standard DropSeq pipeline, there’s no need to repeat this step as you performed it before
running DigitalExpression.

This step can be skipped if you are using ATAC data, which does not rely on gene annotations
for quantification.

CellRanger and STARSolo use different cell barcode (CB) and molecular barcode (UB) tags
then the DropSeq Pipeline defaults. When using donor assignment tools with data from these
pipelines, it's important to remember to explicitly set these tags.

For reference, the CellRanger documentation for BAM Tags:
https://support.10xgenomics.com/single-cell-multiome-atac-gex/software/pipelines/latest/output/
bam-gex
https://support.10xgenomics.com/single-cell-multiome-atac-gex/software/pipelines/latest/output/
bam-atac



https://github.com/alexdobin/STAR/blob/master/docs/STARsolo.md
https://github.com/broadinstitute/Drop-seq/blob/master/doc/Drop-seq_Alignment_Cookbook.pdf
https://support.10xgenomics.com/single-cell-multiome-atac-gex/software/pipelines/latest/output/bam-gex
https://support.10xgenomics.com/single-cell-multiome-atac-gex/software/pipelines/latest/output/bam-gex
https://support.10xgenomics.com/single-cell-multiome-atac-gex/software/pipelines/latest/output/bam-atac
https://support.10xgenomics.com/single-cell-multiome-atac-gex/software/pipelines/latest/output/bam-atac

Donor Assignment

Donor Assignment evaluates each cell of an RNASeq data set independently, leveraging prior
knowledge of donor genotypes to construct a likelihood score for each donor. The donor that
best explains the observed transcribed SNPs in the scRNASeq data is selected as the best
candidate. This likelihood score is then compared to all other donor likelihood scores to
determine the confidence of the assignment.

In the donor assignment file, there is one column emitted for each potential donor’s likelihood.

In the example below, one row of the donor assignment output is plotted. The donor with the
maximum score is selected as the donor most likely to have generated the observed data.
While donors related to the main donor share haplotypes, related donors are still less likely to
explain the observed data. This remains true even for parent/child relationships, where the child
shares the haplotypes of both parents, but in different combinations that can be distinguished
without explicitly leveraging these differences or prior knowledge of these relationships.
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Example Invocation

Example invocations for 10x CellRanger (StarSolo should be very similar)

10x scRNASeq



Unset

/path/to/dropseq_install/AssignCellsToSamples -m 24g

-INPUT_BAM /path/to/cellranger_output/outs/possorted_genome_bam_tagged.bam
-CELL_BC_FILE
/path/to/cellranger_output/outs/filtered_feature_bc_matrix/barcodes.tsv.gz
-VCF /path/to/project_vcf/project.vcf.bgz

-OUTPUT /path/to/output/possorted_genome_bam.donor_assignments.txt
-VCF_OUTPUT /path/to/output/possorted_genome_bam.donor_assignments.vcf.gz
-CELL_BARCODE_TAG CB -MOLECULAR_BARCODE_TAG UB

-LOCUS_FUNCTION_LIST INTRONIC

-IGNORED_CHROMOSOMES null -IGNORED_CHROMOSOMES chrX

-IGNORED_CHROMOSOMES chrY -IGNORED_CHROMOSOMES=chrM

The inputs are a set of sScRNASeq aligned reads in a BAM file, a list of cell barcodes that are
likely cells (in this case as determined by 10x software) and a VCF file containing genotypes
expected to be in the experiment. Providing a cell barcode file limits the scope of which cell
barcodes in the BAM are tested. Memory and computation scales linearly with the number of
donors in the VCF and number of cell barcodes, so it is useful to at least somewhat limit the cell
barcodes included in analysis to those you would want to further analyze downstream.

The VCF file can be a superset of the donors expected in the experiment. Our best practice is
to include all donors that are currently being used in the lab, as donor assignment can then
detect sample swaps - and unfortunately this happens more often than you might expect. The
VCF can be in either VCF format (which is a text based format) or in BCF format (binary). The
advantage of the BCF format is that it parses much more quickly than VCF (~5x faster) which
significantly decreases the run time of donor assignment, as VCF parsing can be quite
expensive for large numbers of donors. To create a binary file, please use Picard’s
VcfFormatConverter.

Other arguments include the list of locus functions to evaluate and the chromosomes to not be
included in the analysis. The locus function defines which RNASeq reads are included in the
analysis - in old versions of gene expression software only coding regions were used, but more
recent versions include intronic UMIs in analysis. Nuclei sequencing data in particular has a
large number of intronic UMIs, which greatly increases the power of donor assignment. We
suggest you always leave this on for scRNASeq unless you have strong priors. The contigs that
are excluded in the above list are the sex and MT contigs, which are all a bit tricky to work with
and require different models than the autosomes. Since donor assignment tends to be well
powered in a typical sequencing experiment we have not implemented those additional models,
and suggest you always ignore those contigs.

Emitted are the main OUTPUT file containing the information about each cell in the input cell
barcode list, as well as a VCF containing the subset of SNPs that passed QC and were
transcribed in the sequence data. This new much smaller VCF can then be used downstream


https://gatk.broadinstitute.org/hc/en-us/articles/4414602419355-VcfFormatConverter-Picard

in doublet detection, which significantly reduces the computational time and memory
requirements.

An argument you might be tempted to use at this point in the analysis is SAMPLE_FILE. This
restricts the VCF to the subset of donors included in the file. However, this reduces your ability
to detect sample swaps in experiments. Donor assignment should select the correct subset of
donors regardless of how many potential donors are in the VCF. Limiting the VCF subset of
donors that are in the experiment will force the algorithm to select one of those donors as the
maximum likelihood answer, even if that answer is of poor quality.

We suggest not using this argument unless you have a specific use case - for example, you
might have a VCF with 1000’s of donors and you want to restrict to all donors used in your lab in
the last 2 years (500). Or, you might want to simulate how a donor assignment responds if a
donor is present in the pool, but you do not have reference information for the donor - in this
case, make a donor list that includes all but one donor from the VCF. Ultimately, you should not
need to give the program hints as to which donors are in your pool.

10x scATAC

Unset

/path/to/dropseq_install/AssignCellsToSamples -m 24g

-INPUT_BAM /path/to/cellranger_output/outs/atac_possorted_bam.bam
-CELL_BC_FILE
/path/to/cellranger_output/outs/filtered_feature_bc_matrix/barcodes.tsv.gz
-VCF /path/to/project_vcf/project.vcf.bgz

-OUTPUT /path/to/output/atac_possorted_bam.donor_assignments.txt
-VCF_OUTPUT /path/to/output/atac_possorted_bam.donor_assignments.vcf.gz
-CELL_BARCODE_TAG CB -DNA_MODE true

-IGNORED_CHROMOSOMES null -IGNORED_CHROMOSOMES chrX
-IGNORED_CHROMOSOMES chrY -IGNORED_CHROMOSOMES chrM

The scATAC invocation is quite similar to scRNASeq. The main difference is due to differences
in the chemistry of the experiment - ATACSeq does not have UMIs, and does not measure
expression, so the UMI and LOCUS_FUNCTION arguments are dropped. Instead, the
DNA_MODE is enabled, which instead uses pcr duplicate flags instead of UMIs for read
deduplication.

In our somewhat limited testing of 10x multiome data, both scATAC and scRNASeq cells are
assigned to donors with similar error rates. What is most important with multiome data sets is
that both modalities do not have equal amounts of data for each cell, so it may be useful to use
the donor assignment for the data set with the highest number of reads/UMIs if you wish to
maximize the number of cells you can assign.



Additional Program Options

Unset

-VALIDATION_STRINGENCY SILENT
-TMP_DIR /path/to/TMP
-BAM_OUTPUT /path/to/output/possorted_genome_bam.donor_assignments.bam

Setting the validation stringency to silent will disable the HTSJDK sequencing read validation,
which can marginally improve run time. If your data has been generated by some consistent
process, turn this on to save a few cycles.

The TMP_DIR option allows you to manually set a temp directory for intermediate file
generation. This directory is used as the input BAM is sorted as part of processing. In certain
cases, users have reported errors where java is unable to correctly determine their temp
directory, and strange looking errors occur. For example:

Unset

Exception in thread "main"
htsjdk.samtools.util.RuntimeIOException:
java.nio.file.NoSuchFileException:
/scratch/tmp/sortingcollection.10853389501593454727 .tmp

Setting the TMP_DIR explicitly should fix this issue.
Setting the BAM_OUTPUT parameter will cause AssignCellsToSamples to emit a BAM file

containing all of the informative reads for the analysis. This can then be used as the input BAM
for doublet detection, which will improve runtime performance of DetectDoublets.

Output File Details

The key output from AssignCellsToSamples is OUTPUT, which contains one row for each cell
barcode evaluated where the cell has at least one informative UMI.

e cell - The cell barcode analyzed. Each cell in the input CELL_BC_FILE file will appear
in the output, unless the cell has no informative data for analysis



e num_snps - The number of informative SNPs for this cell. Informative SNPs pass both
VCF backbone filters, and are transcribed in the sequencing data of the cell.

e num_umis - The number of informative UMIs for this cell. These are distinct allelic
observations (which may be supported by one or more reads), and their total count
should always be greater than or equal to the number of snps.
ratio - The likelihood ratio of best / second best donor.
pvalue - The likelihood of the best donor divided by the sum of likelihood ratios of
all donors. This is reported as 1 - (best/all), such that smaller values indicate
higher confidence in the assignment. Due to numeric issues, the most confident
value is ~ 5e-324.

e FDR_pvalue - The pvalue corrected for the number of cells tested via benjamini

hochberg correction. This value is used to select cells that are confidently assigned to a

single donor, with a threshold value of 0.05.

bestLikelihood - The maximum donor assignment likelihood for a single cell.

bestSample - The donor label with the best likelihood.

median_likelihood - The average likelihood for all donors

population_average_likelihood - For each UMI, we calculate the likelihood of

observing a uniform mixture of all donors. This is used as the likelihood when a donor
does not have a high quality genotype at the site. This column contains that value
aggregated across all sites considered.

e Additional columns represent individual donor likelihood scores.

Doublet detection

At this point, each cell barcode has been assigned to its most likely donor. However, a cell
barcode

might contain more than one physical cell. If those cells arose from two different donors, the
transcribed alleles can be interpreted as a mixture of alleles from both of those individuals.

What do the donor assignment likelihoods look like for a doublet? Below is plotted the
likelihoods for all donors for a doublet. The “best” donor the cell is assigned to has the highest
likelihood, but there’s a second donor that also has quite a high likelihood, compared to the rest
of the distribution. In this situation, both donors do a good job of explaining the data on their
own, but we can also test a model where both donors contribute transcribed alleles, and the
combination of the two donors better explains the data than either of the two donors alone.
When a mixture of two donors is more likely to explain the data than a single donor, we label
that cell a doublet.



Example Doublet
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Doublet detection works as a series of hierarchical models, one per donor pair. The initial donor
assignment selects the donor most likely to explain the observed UMIs, and this becomes the
first donor of the pair. The second donor of the pair comes from any donor that is observed at
least once in the initial donor assignment.

For each pair of donors a joint likelihood of the two donors is calculated along with the relative
proportion of the two donors in the cell. The likelihood is defined as the summed weighted
average of the two donors' likelihoods at each UMI. The relative proportion of each donor in the
cell is unknown, but can be determined by maximizing the likelihood of the data given a
particular weight.

To determine this proportion, we optimize the mixture component of donor 1 to donor 2 to
maximize the likelihood of that donor pair. The mixture score is the fraction of the data that
arises from the first donor of the pair and is bounded to [0.8-0.2]. If the mixture score is
unbounded, sequencing errors, ambient RNA, and genotyping errors will almost always
generate mixtures of two donors that are very close to one, with a higher likelihood than the
single donor likelihood, resulting in most cells being classified as doublets.

Now we have a likelihood model for each possible pair of the best donor plus another donor
expected to be in the experiment. All models are adjusted such that they have the same
number of observations so their likelihoods are comparable. To select the donor pair that best
explains the data, we first calculate the maximum likelihood each donor pair by selecting the



maximum likelihood of the optimal mixture, the likelihood of the pair with a mixture of 1 (all data
arises from donor 1) and the likelihood of the pair with a mixture of O (all data arises from donor
2.) The donor pair with maximum likelihood is then selected as the best pair.

With just a single donor pair remaining, we can finally test if one donor or two best explains the
data. To classify the pair as a singlet or doublet, we calculate the probability of the data being a
doublet as the doublet likelihood divided by the sum of the doublet likelihood and mixture=1,0
likelihoods. We classify cells as doublets if their probability is greater >= 0.9. The vast majority
of doublet probabilities are bimodally distributed at approximately 1 and 0.

To cover strange edge cases where a donor’s cells might be in the pool but are extremely rare
and small and are never seen as the most common donor of a pair, a donor list can be supplied
that contains all donors expected. Even if a donor was not observed as the primary donor for a
cell, this list will add those donors as possible pairs for testing. This should catch that odd edge
case (that we have yet to see in a real experiment, despite having run 100’s of experiments.)

One question that frequently arises is the amount of UMIs needed to confidently distinguish
between singlets and doublets. When Doublet detection is underpowered, it may be unable to
distinguish between the two models and erroneously flag cells as doublets. From in-silico
mixing experiments, a reasonable estimate for the number of informative UMIs needed is
approximately 100-200. Doublets where both cells have relatively equal sizes are easier to
detect with a given number of UMIs, while unequal sized doublets where one donor’s cell is
much larger than the other (0.8) require more UMls.

Doublets
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10581885/bin/NIHMS1935560-supplement-Supplemental_Figures_and_Tables.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10581885/bin/NIHMS1935560-supplement-Supplemental_Figures_and_Tables.pdf

If you think the number of doublets detected is much higher than you expected, check to make
sure your cells have captured a sufficient number of UMIs. This can be increased by
sequencing deeper, or by using a SNP backbone (VCF file) with more SNPs. We have found
that SNP array data + high quality imputation (filtered to R2>=0.9 sites) works well, and is
significantly better than SNP array data without imputation.

Example Invocation

10x scRNASeq

Unset

/path/to/dropseq_install/DetectDoublets -m 16g

-INPUT_BAM /path/to/output/possorted_genome_bam.donor_assignments.bam
-CELL_BC_FILE
/path/to/cellranger_output/outs/filtered_feature_bc_matrix/barcodes.tsv.gz
-VCF /path/to/output/possorted_genome_bam.donor_assignments.vcf.gz
-SINGLE_DONOR_LIKELIHOOD_FILE
/path/to/output/possorted_genome_bam.donor_assignments.txt

-SAMPLE_FILE /path/to/donor_list.txt

-OUTPUT /path/to/output/possorted_genome_bam.doublets.txt
-CELL_BARCODE_TAG CB - MOLECULAR_BARCODE_TAG UB -LOCUS_FUNCTION_LIST INTRONIC
-IGNORED_CHROMOSOMES null -IGNORED_CHROMOSOMES chrX

-IGNORED_CHROMOSOMES chrY -IGNORED_CHROMOSOMES chrM

-MAX_ERROR_RATE ©.05

The outputs from AssignCellsToSamples become the inputs to DetectDoublets. In the above
example, we've taken advantage of AssignCellsToSamples ability to emit both more minimal
BAM and a smaller VCF to speed up computation time and reduce memory usage. As with
AssignCellsToSamples, we keep the same settings for the functional annotations considered,
and filter the same contigs.

10x scATAC

Unset

/path/to/dropseq_install/DetectDoublets -m24g

-INPUT_BAM /path/to/output/atac_possorted_bam.donor_assignments.bam
-CELL_BC_FILE
/path/to/cellranger_output/outs/filtered_feature_bc_matrix/barcodes.tsv.gz
-VCF /path/to/output/atac_possorted_bam.donor_assignments.vcf.gz



-SINGLE_DONOR_LIKELIHOOD_FILE
/path/to/output/atac_possorted_bam.donor_assignments.txt
-SAMPLE_FILE /path/to/donor_list.txt

-OUTPUT /path/to/output/atac_possorted_bam.doublets.txt
-CELL_BARCODE_TAG CB -DNA_MODE true

-IGNORED_CHROMOSOMES null -IGNORED_CHROMOSOMES chrX
-IGNORED_CHROMOSOMES chrY -IGNORED_CHROMOSOMES chrM
-MAX_ERROR_RATE ©.05

Using scATACSeq has the same changes to parameters for DNA data as
AssignCellsToSamples - No UMI barcodes, and DNA_MODE true.

Mitigating the effects of cell free RNA

MAX_ERROR_RATE

One new parameter is MAX_ERROR_RATE. The goal of this parameter is to put a cap on the
maximum penalty to the likelihood calculation when a confident observation of an allele in the
sequencing data conflicts with the expected allele. Alleles that are observed can come both
from the donor(s) that are captured by the cell, as well as other error modes like cell free RNA.
Without this parameter being set, one or more of the pairwise models may observe an error
allele as coming from the second donor of the pool. With enough cell free RNA, this can result
in false positive doublet calls. In practice, the value of 0.05 mitigates these errors enough to
keep the false positive rate low.

Per-cell correction with Cellbender

If you don’t like setting an arbitrary threshold, we have an alternate set of parameters that model
contamination at a per-cell level and perform as well or better than the simple threshold.

Instead of supplying a global threshold to all cells, you can instead supply two parameters at a
per-cell level.

The first parameter is the amount of cell free RNA captured by each cell, which can be
generated by Cellbender remove-backaground. Cellbender models how much cell free RNA and
UMI chimeras are present in each cell, and generates a new expression matrix after those error
counts are removed. To supply this parameter to DetectDoublets, calculate the total number of
UMIs captured by each cell before running Cellbender, and then again after CellBender is run.
The contamination estimate is the fraction of UMIs that were removed. For example, if a cell
had 500 UMIs before CellBender was run, and 400 after, 100 of those UMIs would have come
from cell free RNA, and the contamination fraction would be (500-400)/500=0.2. The input file is
tab separated, and contains two columns: cell_barcode and frac_contamination.



https://github.com/broadinstitute/CellBender

The second parameter is the allele frequency at each site. This can be calculated via another
program we distribute, GatherDigitalAlleleCounts. The inputs required for this program are
inputs you’ve already used - the VCF file, the BAM, and the donor list.

Here’s an example invocation for 10x RNASeq data:

Unset

/path/to/dropseq_install/GatherDigitalAlleleCounts -m 16g

-INPUT /path/to/cellranger_output/outs/possorted_genome_bam_tagged.bam
-CELL_BC_FILE
/path/to/cellranger_output/outs/filtered_feature_bc_matrix/barcodes.tsv.gz
-VCF /path/to/project_vcf/project.vcf.bgz

-SAMPLE_FILE /path/to/donor_list.txt

-ALLELE_FREQUENCY_OUTPUT /path/to/output/allele_freq.txt
-LOCUS_FUNCTION_LIST INTRONIC

-IGNORED_CHROMOSOMES null -IGNORED_CHROMOSOMES chrX
-IGNORED_CHROMOSOMES chrY -IGNORED_CHROMOSOMES chrM
-SINGLE_VARIANT_READS false -MULTI_GENES_PER_READ false

GatherDigitalAlleleCounts is a multi-function program that generates allelic pileups with both
UMI and read counts at requested SNP sites and can be used for both scRNASeq and DNA
data. An example of the key columns in the output:

chromosome position ref_allele alt_allele maf_umi
chr1 730177 G A 0.000
chri 791101 T G 1.000
chri 796652 A C 0.167
chri 798969 T C 0.068
chr1 802843 T C 0.111

With these two sets of features, Doublet detection can calculate the likelihood of an observed
allele being drawn from the cell, vs being drawn from the cell free RNA that was co-captured,
and modify the doublet detection likelihoods appropriately without setting an arbitrary threshold.

To use these features in DetectDoublets remove the MAX_ERROR_RATE argument and add:

Unset

-ALLELE_FREQUENCY_ESTIMATE_FILE /path/to/output/allele_freq.txt
-CELL_CONTAMINATION_ESTIMATE_FILE /path/to/output/cell_contamination.txt



This adaptation for doublet detection has only been implemented and tested for scRNASeq
data. scATAC data in our limited testing seems to be a bit more robust to errors, and a
MAX_ERROR_RATE=0.05 produces reasonable results.

Output File Details

In this output, each line contains the pair of donors that best explains the data for an input cell.
It's important to remember that even though the best pair is emitted, one donor of that pair may
be a far better explanation of the observed alleles than a mixture of the two donors. The
restriction on the donor mixture to [0.8-0.2] controls the minimum difference between a droplet
that captured a single donor and a mixture of two donor cells of unequal sizes.

e cell - The cell barcode analyzed. Each cell in the input CELL_BC_FILE file will appear
in the output, unless the cell has no informative data for analysis

e sampleOneMixtureRatio - The estimated proportion of alleles that are contributed by
the first donor of the donor pair. This value is by default restricted to values between 0.8
and 0.2.
sampleOne - The first donor of the pair.
sampleOneLikelihood - The likelihood of the first donor of the pair. This is the
likelihood of the data with the mixture parameter set to 1.
sampleTwo - The second donor of the pair.
sampleTwol.ikelihood - The likelihood of the second donor of the pair. This is the
likelihood of the data with the mixture parameter set to 0.
mixedSample - The concatenated label for sampleOne:sampleTwo.
mixedSampleLikelihood - The likelihood of the data given a mixture of the two donors
at the mixture ratio.

e num_paired_snps - The number of SNPs that were transcribed and genotype in both
donors of the pair.

e num_inform_snps - The number of paired snps that had different genotypes for the two
donors.
num_umi - The number of UMIs captured by paired SNPs.
num_inform_umis - The number of UMIs captured by informative SNPs
Ir_test_stat - The likelihood ratio of the doublet likelihood / max(sample one likelihood,
sample two likelihood).

e sampleOneWrongAlleleCount - The number of transcribed alleles that could not have
been generated by the sampleOne. For example, if sampleOne had a genotype of A/A
and a non-A allele was observed, this count would be incremented once per UMI
observed.

e sampleTwoWrongAlleleCount - The number of transcribed alleles that could not have
been generated by sampleTwo.
bestLikelihood - The maximum of the doublet and single donor likelihoods.
bestSample - The sample with the best likelihood - this may sampleOne, sampleTwo, or
mixedSample.



e doublet_pval - The probability that the cell is a doublet in the range [0-1].

e best_pair_pvalue - The probability that one pair of donors best explains the data, in the
range of [0-1]. The initial model tests all possible combinations sampleOne with all other
observed donors as sampleTwo. This tests that one of those pairs explains the
observed data much better than any of the other pairs by comparing the best likelihood /
sum (all likelihoods). In cases where a single pair of donors best explains the data
(best_pair >=0.9), we label that a confident doublet. In cases where many pairs of
donors explain the data with similar likelihoods, that is more likely the result of cell free
RNA contributing many alleles to the cell barcode.

Math

If you'd like to dig deeper into the likelihood calculations and how missing genotype data is
handled for both donor assignment and doublet detection, you can dig into the methods section
of Wells MF, et al Natural variation in gene expression and viral susceptibility revealed by neural
progenitor cell villages. Cell Stem Cell. 2023 Mar 2;30(3):312-332.e13. doi:
10.1016/j.stem.2023.01.010. Epub 2023 Feb 15. PMID: 36796362; PMCID: PMC10581885.

The methods section covers the math, and some additional validation of the method is covered
by the first supplemental figure.

Analysis and QC

We have released an accompanying R package DropSeq.dropulation that can further analyze
the outputs of AssignCellsToSamples and DetectDoublets to produce a number of useful
outputs. The function takes in at a minimum the single donor assignment and doublet files
along with a file containing a list of donors expected in the experiment. There are some
additional input files that will generate other plots, but you can skip those inputs if they are
onerous to generate. The main outputs are a text file mapping the cell barcodes to donors of
origin for singlet cells, a set of summary metrics, and a PDF containing a number of different QC
plots to examine the results in more detail.

As of DropSeq V3, R packages are released as stable binary freezes. You can also install the
latest (possibly) unstable version of the code we're using for analysis directly from source code.
See the github main page readme for installation instructions.



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10581885/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10581885/
https://github.com/broadinstitute/Drop-seq?tab=readme-ov-file#building-drop-seq-r-libraries

QC Text Reports

donor_cell_map

This is a tab delimited text file that maps cell barcodes to the donor of origin for cell barcodes
that can confidently be mapped to a single donor. This is done by excluding all cell barcodes
assigned to doublets, then filtering on single donor FDR to those cells with a value <=0.05.
There’s a final filter to remove cells from donors that are very rare in the pool (<0.2%), which
typically removes zero to a few spuriously assigned cells. This is the subset of cell barcodes
that we take into downstream analysis.

Example:

cell bestSample
AAAGAACGTGCACGCT donor1
AAAGGATAGAGAACCC donor2
AAAGGTATCGGTAGGA donor3

dropulation_summary_stats

A tab delimited text file that contains some metrics about the experiment. This is a companion
to the visual report below. When running multiple experiments, this file is a convenient way to
aggregate quality control results across many experiments to look for outliers. If some of the
optional inputs are not supplied, some of these columns will not have results.

expName - The data set name

total_cells - The total number of cells tested. Cell barcodes show up in this list only if
they contain at least one informative UMI.

pct_all_doublets - The percentage of cells that are flagged as either confident doublets
(where a single donor pair is much more likely than any other donor pair) or diffuse
contamination doublet (where many donor pairs have similar likelihoods.)
pct_diffuse_contam_doublets - The percentage of cells that are flagged as having a
higher amount of cell free RNA, such that many pairs of donors could explain the data.
pct_confident_doublets - The percentage of cells where a single donor pair best
explains the data.

pct_impossible_donors - The fraction of cells are assigned to donors that are not
expected in the pool, before any filtering takes place.

pct_fdr_impossible_donors - The fraction of cells are assigned to donors that are not
expected in the pool after FDR filtering.

pct_doublet_filtered_impossible_donors - The fraction of cells are assigned to donors
that are not expected in the pool, after both FDR filtering and doublet filtering. This
number should be close to 0.

singlets - The number of cells in the pool not flagged as a doublet - not all of these cells
may pass the FDR threshold.



e assignable_singlets - The number of cells in the pool not flagged as a doublet and
pass the FDR threshold

e cell_equitability - A measure of how uniform the donor pool is. This metric looks at how
many cells are assigned to each donor, and calculates the diversity index, normalized to
the range of 0-1, where numbers closer to 1 are closer to a uniform distribution.

e diversity - A measure of how uniform the donor pool is. This metric looks at how many
total UMIs are assigned to each donor by summing the number of UMIs across all cells
assigned to the donor. This is the unnormalized diversity index.
equitability - The diversity index normalized to a range of 0-1.
totalUMis - The total number of UMIs assigned to singlet cells.
reads_per_umi - The average number of reads per UMI. This can be useful to
determine if a library has been under or over sequenced. We typically see this value in
the range of 2-4 for pools with appropriate amounts of sequencing.

QC Plots

We use a number of QC plots to evaluate the quality of each experiment. Because some
experiments are inherently more or less difficult to analyze, we have included a few different
data sets to demonstrate those differences.

The R package that generates these plots is available from our git repository. Most of the plots
below will be generated by including the outputs from donor assignment and doublet detection.
Some additional optional plots can be generated by including a few additional files that contain
measurements of the total number of reads and UMIs captured per cell.

Nuclei (low loading)

The first data set comes from primary tissue from the brain that was previously frozen and
prepared as nuclei. The loading of nuclei to beads in this data set is fairly low, leading to
relatively low numbers of total nuclei, lower numbers of doublets and lower levels of cell free
RNA..


https://en.wikipedia.org/wiki/Diversity_index
https://github.com/broadinstitute/Drop-seq

Frequency

6000-

4000-

2000~

Nuclei (low loading)
Cells remaining [ 6967 ] [ 86.2 %]

Confident doublet rate 12.92 %

The distribution of doublet probability scores. In a well
behaved experiment this distribution is extremely bimodal
and insensitive to where the doublet threshold is set.

The confident doublet rate of 12.92% should approximate
the expected doublet rate from poisson loading.

The total fraction of cells remaining after all doublet filtering
is 86.2, which includes filtering of both confident doublets
and diffuse contamination cells.

0- ] T —
0.00 0.25 0.50 0.75 1.00
Doublet Probability
The top bar plot lists the fraction of cells filtered by both
Doublet Rates diffuse contamination and confident doublets.
LU The second barplot looks at the percentage of cells that
are assigned to a donor that is unexpected in the pool. If
-] 13.8% 0.9% 12.9% the data set is noisy, it's possible for cells to be assigned to
- - an unexpected donor.
: ————— 1 . .
° _ o . The leftmost bar has no filtering. The center bar adds FDR
al diffuse contamination confident filtering, and the right bar uses both FDR filtering and
removes doublets.
% impossible donors If the % of impossible donors is hon-zero but low in the
fully filtered data, it's possible that a small number of cells
= with low numbers of observations are mis-assigned to an
@ o incorrect donor. A further filtering step will be applied by a
a | e o s later QC step that may remove these.
7 If the % of impossible donors after doublet is high in the
2 right most column, it's possible the expected list of donors
' al +fdr filtered ‘+doublet filtered is incorrect - either due misspecification, or a sample swap

in the experiment. Donor assignment doesn’t rely on a
sample list to run, so if the correct sample is in the VCF
these errors can be detected and corrected later in the
report.




All FDR corrected pvalues

99.9 % of cells with FDR < 0.05

3000 -

The distribution of FDR corrected p values. In a well
powered data set the maijority of cells will have very small
values. Cells that have values closer to 0 are either cells
with few observations, or cells that are doublets where
multiple donors had very similar likelihoods.
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density

MNuclei (low loading)
Singlets (FDR<=0.05) + doublets
Singlet Error Rate 0.7%
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25~

0.00 0.02 0.04 0.06 0.08
fraction of alleles that could not be generated by donor cne

Each cell is assigned to a donor, giving us an expectation
of what alleles we should see in the sequencing data. For
each cell we can calculate the fraction of observed alleles
that could not be generated by the donor - for example if
the donor is A/A at a SNP site and we observe a non-A
allele, then that allele could not have come from the donor.

The x-axis of the plot captures this error rate. The
expectation is that for singlets, the error rate should be low
as the observed alleles come from a mixture of the donor
cell and cell free RNA that was co-captured in the droplet
and assigned to the cell. The error rate in the header is the
median error rate of the singlets.

For cells that are doublets, both donors contribute alleles to
the data. At sites where the genotypes of the two donors
differ, the second donor can contribute alleles that could
not be generated by the first donor. As expected, this
leads to the confident doublets having a higher error rate
than the singlets. The diffuse contamination cells also
have a higher error rate, though this may be due to more
cell free RNA being captured by these cells.

Median Scora
:I1

Marmalizad likalihood (likelihoodinum inform UMIs)
L L |

Donor assignment normalized likelihood

singla pass FDR
diffuse contaminafion

confident doublet

1a+04
Mumber of Informative UMIs

1e+03

01 =0.1065

=0.1482

=0.2665

' '
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Another way to look at error rates is to calculate the
average penalty score for each cell. This is the likelihood
of the donor divided by the total number of UMIs observed,
which gives an average penalty per UMI. Penalties closer
to 0 have fewer errors.

In this plot, each point is a cell. The average likelihood is
plotted on the Y axis, and the number of informative UMIs
on the X. There’s a few interesting features to this plot:

1. The cells labeled as doublets tend to have higher
penalty scores for a given number of UMIs. This
makes sense, as a second donor contributes alleles
could not have come from the donor.

2. Smaller cells have higher penalty scores on
average. A smaller cell will contribute fewer UMIs
to the droplet compared to a large cell, but will
capture a larger proportion of cell free RNA. The
cell free RNA will contain a mixture of alleles from
all donors, some of which will be errors.

3. Some diffuse contamination cells have fewer UMIs
relative to the observed penalty score. They also
tend to be some of the smaller cells captured.




All Donor Assignments seen at least once
[FDR passing cells] [ 6967 ]

12009

The number of cells assigned to each donor. The cells
included in this list have been filtered by both FDR and
doublets have been removed.

]
. If cells are assigned to unexpected donors (see page 2
plot) those cells will appear here. It's possible in an
5 o \ experiment with a high amount of cell free RNA or with
s 2 very small cells for a cell to be misassigned to the wrong
2 | donor. Those mis assignments would appear in this plot as
£ ‘\\ donors with very few cells assigned.
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Nuclei (low loading)
SW Div: 2.69; SW Eq: 0.93

1200 4

This plot has the same filters as the previous plot. This
plot includes the priors of which donors should appear in
the pool. If donors appear in this plot but are not expected,
they will be colored red. If the supplied list of donors
contains identifiers that were not detected in the data set,

' Donor Status . . . . .
; [@] exvecren those donors will be included in this output and their count
« 900 \ will be set to 0.
g '-
- 1 .
2 \ It's useful to check this plot both to make sure that only the
2
g ] donors you expected were observed, and all donors you
f : expected were detected.
» 5097 L }
8 .-e
K \.
B -8-9
0
E .o
=
300 \‘
R T
‘.
'—-."
© n 2 o T M T @m B N Rk - @ ®3 m o~ 2 o=
8 8888888888288 84821333
Nuclei (low loading) The median number of UMIs per donor. This data comes
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Total UMIs [millions)

Distribution of UMIs across donors
18 donors; 57.6M UMIs; SW Div: 2.51; SW Eq: 0.87
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LBOMNOR_11
DOMNOR_18
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DOMNOR_10
DONOR_15
DOMNOR_17
DONOR_3
DOMOR_4
DOMNOR_16
DOMNOR_T

The distribution of total UMIs per donor. For each donor,
the UMIs across all cells are summed together. This metric
is useful for downstream processes where analysis is
performed on pseudobulk data - for example, standard
eQTL analysis combines expression across all cells for
each donor into a single measurement.

In a perfect experiment, all donors would capture the same
number of UMIs. To evaluate how uniform the distribution
is, the Shannon diversity index is calculated. This is then
normalized to a scale of 0-1 as Shannon’s equitability, with
a score of 1 being a completely uniform distribution. This
second metric is useful to compare pools to each other
when the number of donors in the pool varies.

median UMIs per donor

Nuclei (low loading)
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Since the number of UMI per donor scales with both the
number of cells captured per donor and the number of UMI
captured, it can be useful to look at the relationship of the
two parameters.

In particular, it may be helpful to look for donors that have
both small numbers of cells and relatively few UMIs
captured on average, as the tissue quality of the donor
may be low.



https://en.wikipedia.org/wiki/Diversity_index

number of cells

Expressed UMIs Informative UMIs These four panels look at the number of informative UMIs

.00 observed compared to the number of expressed UMIs.
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These plots can give you a sense of how well your
measured expression converts into power to assign the
cells to donors.
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& This distribution is typical for what we see in many
populations - one would not expect all transcripts to contain
a transcribed SNP, but a result in the range of 0.25-0.75 is
reasonable. If this number is lower than 0.25, then it may

fraction of UMIs that are informative

Reads/UMIs
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Mis per cell[log10] . | fum Tnserp (VCF) file. Increasing the total number of SNPs in the VCF
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Reads per UMI in assigned singleton cells This measures the number of reads per UMI for cells that
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In general, you want this metric to be in the 2-4 range.
This experiment had a low nuclei loading, and may have
been sequenced more than necessary.
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Sample Swap Example
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Number of cells assigned to donor
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MNuclei (low loading, sample swap)
SW Div: 2.69; SW Eq: 0.92

This plot was generated from the same data as the low loading
Nuclei data set, but the donor list was altered to simulate

DOMNOR_T -

DOMNOR_6

DOMNOR_11 4

sample swap.

Donor Status In the case of a single sample swap, the plot highlights the

I% EXPECTED unexpected donor in red. This donor was in the VCF file which
UNEXPECTED allowed the cells to be assigned to that donor, but the donor

was not in the donor list so was not expected to be in the pool.

The donor that was not seen in the data but was in the

expected file is added to the plot with 0 counts indicating the

donor is expected but absent.
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IPSC cells (large pool)

Cultured cells like iPSCs also tend to be uniformly shaped and travel through nanofluidic
devices more easily, creating less cell free RNA. Cultured cells also tend to have less donor to
donor variability in quality and thus power to the cells to their donor of origin. In this experiment,
the 108 donors were added to the pool. This data set had very high UMI yields (median ~
100,000 UMIs per cell), which provided far more than enough data for donor assignment.
Because our implementation of donor assignment and doublet detection scales linearly with the
number of cells and donors, this analysis was still straightforward to run on a modest machine
with 32G memory.

We'll skip some of the report pages and look at the more interesting ones that may differ from
the first example.
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iPSC

Cells remaining [ 11769 ] [ 80.9 %)

Confident doublet rate 18.54 %
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0.75

1.00

The doublet rate is a bit higher than the first experiment.
Due to the average number of UMIs per cell being very
high the distribution is even more bimodal than the first
example.

Frequency

All FDR corrected pvalues after filtering doublets
80.9% of cells [ 11769 / 11768 | with FDR < 0.05

12000 -

2000 -

G000 -

3000 -

-300

-250
FDR p-value [log10]

-200

All cells are confidently assigned, there are no cells with
FDR scores anywhere near 0.




density

iPSC
Singlets (FDR<=0.05) + doublets
Singlet Error Rate 0.37%
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The diffuse and confident doublet penalty scores are
better separated from the singlets than the previous
example.
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One striking thing about the iPSC experiment is how
much more distinct the doublet class is in this plot than
the previous example. Even without cluster labels, it
would be possible to properly classify most doublet cells
in this data set by finding a cluster of cells with high error
rates.




Number of cells assigned to donor
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Donor Status
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Because this pool contains so many donors, it's possible
for some donors to have very low representations but be
present in the pool.

With the minimumFractionDonor threshold set at 0.2%,
some donors were removed as being below the
representation, then flagged as being missing.
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Donor Status

@ EXPECTED

Repeating this plot with a threshold of 0.05%, the donors
that were filtered out reappear. With a very large pool
size, some donors had very few cells assigned to them,
but there were no misclassifications above this threshold.

In fact, there was just 1 cell assigned to a donor not in the
expected pool out of 11769 cells. The VCF contained 187
donors, of which 108 were expected in the pool.

Allowing donor assignment to have a chance to try and
assign cells to donors outside the expected set further
boosts our confidence that donor assignment is working
properly, and is capable of detecting sample swaps.




median UMIs per donor
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Unlike the nuclei data set, the median number of UMIs
captured by each donor are very similar. This is an
advantage of working with co-cultured cell systems where
tissue quality does not play a role.




Nuclei (high loading)

This is a library of nuclei captured from previously frozen primary tissue samples. The pool was
a mixture of tissue from 20 donors that was then processed as a single batch. Below is a plot of
the fraction of UMIs for each nuclei that are removed by CellBender. 22.2% of nuclei have at
least 20% of their UMIs (and thus transcribed alleles) contributed by cell free RNA. CellBender
is very helpful to remove these from the expression matrix, but it does not remove specific reads
from the BAM file. The amount of cell free RNA is significantly higher in this experiment, which
makes donor assignment more challenging.

Nuceli (high load)
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fraction UMIs from cell free RNA

23374 nuclei were captured in this data set. Donor assignment was run with a SNP backbone
containing 1749 donors, which encompassed all donors that had been used in the lab in the last
few years, along with a number of other donors that the lab had only received genotypes for, but
not physical samples. Running donor assignment on this huge VCF file allowed us to be
confident that there were no sample swaps that occurred at any point either during the
experiment, or prior to the lab receiving the samples. We ran donor assignment on ~ 2G bam
files that contained all reads for a subset of cells, and donor assignment ran successfully with
32G of memory.
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Nuclei (high loading)
Cells remaining [ 14939 ] [ 64 %]

Confident doublet rate 24.44 %
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Daublet Probability
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The confident doublet rate is higher in this data set, but even
with both confident doublets and diffuse contamination
doublets removed, 14939 nuclei of the 23374 tested are
confidently assigned. Even with many nuclei discarded, this
is a good yield for the experiment.
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I
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In the top barplot, the diffuse contamination nuclei class is
much larger than the previous two data sets.

In the bottom plot, the filters help remove assignments to
donors that are not expected to be in the pool.
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Muclei (high loading)
Singlets (FDR<=0.05) + doublets
Singlet Error Rate 1.75%
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The error rate of the singlet cells is much higher in this data
set than previous experiments - 1.75% vs 0.7% for the
previous nuclei data set. This is a lower bound on the error
rate, but useful to check.

The error rates of the three classes are less well separated
with significant overlaps, a hint that doublet detection is more
challenging.

Mormalized likalihood (likelihood/num infarm UMIs)
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Donor assignment is more difficult for cells with fewer UMlIs.
Given the CellBender results, it is not surprising that smaller
nuclei that capture a larger proportion of cell free RNA are
classified as diffuse contamination.

The confident doublets are in a class separate from the
singlets, so those labels appear to be reasonable.




distributed as 1 or 2 nuclei assigned to each of the spurious

There are 9 cells that pass FDR and are assigned to donors
donors.

that are not expected in the pool. Those errors are

The 9 nuclei that were assigned to spurious donors are
removed at this stage, where each donor is expected to
contribute at least 0.2% of the total number of nuclei in the

All Donor Assignments seen at least once

[FDR passing cells] [ 14891 |
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remaining nuclei are assigned to the expected set of 20

Despite the challenging conditions of the experiment, all
donors from a possible set of 1749 donors.

The pool is fairly well balanced, with only two donors having

moderately low representation.

Donor Status
IE EXPECTED

SW Div: 2.96; SW Eq: 0.99

Nuclei (high loading)
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median UMIs per donor

Nuclei (high loading) Those two donors have both fewer cells than expected, and
the number of UMIs captured on average for each cell are
the lowest of the group. It's possible that the source tissue
was not of the same quality as the rest of the experiment.
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Experimental diffuse contamination rescue

We have some work in progress that may rescue many of the diffuse contamination cell
barcodes and improve yields in these more difficult experiments. Using data from the Nuclei
(high load) library, experimental rescue recovers 2051 of the 2692 diffuse contamination cell
barcodes (76%). For many data sets this is unnecessary, but may be of use for more
challenging sets.

We’d like to design some validation experiments before we move this feature from
EXPERIMENTAL to a step we recommend or enable by default. This document will be updated
and a new software version will be released if that validation is successful.

This rescue defines two populations - cells that are assigned to a donor that belongs in the pool,
and cells that are mistakenly assigned to donors that are not expected in the pool that are more
clearly mistakes in assignment. Diffuse contamination cells tend to have smaller numbers of
UMIs and contain more cell free RNA than other cells, so are more likely to be assigned to a
random donor in the superset. These cells are then rescued by finding linear separations
between the two populations that maximize the number of assignments to donors that belong in
the pool while controlling the FDR rate to minimize the number of cells that are assigned to a
donor not expected in the pool.



If you wish to experiment with this yourself, it's very important that donor assignment has been
run on a superset of donors in the experiment pool. We frequently run donor assignment on
large VCFs containing hundreds of donors. Review your plot of % impossible donors to see if
you have some cells that are assigned to a donor not expected in the pool before attempting
rescue.
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