
The FFI Reference Manual
a Foreign Function Interface (0.1)

for MIT/GNU Scheme version 7.7.90+

by Matt Birkholz

This manual documents FFI 0.1.

Copyright c© 2006, 2007, 2008, 2009, 2010 Matthew Birkholz

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License.”

Chapter 1: Introduction 1

1 Introduction

This FFI provides Scheme syntax for calling C functions and accessing C data. The func-
tions and data structures are declared in a case sensitive ‘.cdecl’ file, which is used by a
shim generator to produce callout and callback trampoline functions. The trampolines are
compiled and linked to the C toolkit, producing a shared object that Scheme can dynami-
cally load.

Synopsis

Examples of the new syntax:

(C-include "prhello")

(malloc (C-sizeof "GdkEvent"))

⇒
#[alien 42 0x081afc60]

(C-> #@42 "GdkEvent any type")

⇒
14

(C->= #@42 "GdkEvent any type" 13)

(C-enum "GDK_MAP")

⇒
14

(C-enum "GdkEventType" 14)

⇒
|GDK_MAP|

(C-sizeof "GdkColor")

⇒
12

(C-offset "GdkColor blue")

⇒
8

Chapter 1: Introduction 2

(C-array-loc #@43 "GdkColor" (C-enum "GTK_STATE_NORMAL"))

⇒
#[alien 44 0x081afc60] ; New alien.

(C-array-loc! #@43 "GdkColor" (C-enum "GTK_STATE_PRELIGHT"))

⇒
#[alien 43 0x081afc78] ; Modified alien.

(C-call "gtk_window_new" retval args ...)

⇒
#!unspecific

(C-callback "delete_event")

⇒
#[alien-function 44 Scm_delete_event]

(C-callback (lambda (window event) ...))

⇒
13 ; A fixnum registration ID.

Summary

A Scheme-like declaration of a toolkit’s C functions, constants, and data types is given in
a case sensitive ‘.cdecl’ file. The C declarations look like this:

(extern (* GtkWidget) ; gtk+-2.4.0/gtk/gtkwindow.h
gtk_window_new

(type GtkWindowType))

(typedef GtkWindowType ; gtk+-2.4.0/gtk/gtkenums.h
(enum

(GTK_WINDOW_TOPLEVEL)

(GTK_WINDOW_POPUP)))

The c-generate procedure reads these declarations and writes three files:
‘library-types.bin’ (a fasdump of the parsed declarations), ‘library-const.c’ (a C
program that prints C constants and struct offsets), and ‘library-shim.c’ (trampoline
functions adapting Scheme procedure application to C function call). The ‘-const.c’
program generates a ‘-const.scm’ file, which can be syntaxed to produce a ‘-const.bin’
file.

(load-option ’FFI)

(c-generate "prhello" "#include <gtk/gtk.h>")

The ‘-types.bin’ and ‘-const.bin’ files together provide the information needed to
expand C-... syntax, and are only needed at syntax time. The compiled ‘-shim.so’ file is

Chapter 1: Introduction 3

used at run time, dynamically loaded into the Scheme machine. Chapter 6 [Compiling and
Linking], page 10, which describes these files in more detail, and shows how they might be
built and installed.

(C-include "prhello")

The C-include syntax loads the ‘-types.bin’ and ‘-const.bin’ files at syntax time. It
should appear at the top level of any file containing C-... syntax, or be evaluated in the
syntax environment of such code.

The C-call syntax arranges to invoke a callout trampoline. Arguments to the trampo-
line can be integers, floats, strings or aliens (non-heap pointers, to C data structures, see
Chapter 3 [Alien Data], page 7).

(let ((alien (make-alien ’|GtkWidget|)))

(C-call "gtk_window_new" alien type)

(if (alien-null? alien) (error "could not open new window"))

alien)

The C-callback syntax is used when registering a Scheme callback trampoline. The
two forms of the syntax provide two arguments for the registration function: the callback
trampoline’s address, and a “user data” argument. When the toolkit calls the trampoline,
it must provide the fixnum-sized user data as an argument.

(C-call "g_signal_connect" window "delete_event"

(C-callback "delete_event") ; e.g. &Scm delete event
(C-callback ; e.g. 314
(lambda (window event)

(C-call "gtk_widget_destroy" window)

0)))

The first use of C-callback (above) expands into a callback trampoline address — an
alien function. The second use evaluates to a fixnum, which is associated with the given
Scheme procedure.

The C-> and C->= syntaxes peek and poke values into alien data structures. They take
an alien and a constant string specifying the alien data type and the member to be accessed
(if any).

(C-> alien "GdkRectangle y")

7→
(#[primitive c-peek-int] alien 4)

(C->= alien "GdkRectangle width" 0)

7→
(#[primitive c-poke-int] alien 8 0)

(C-> alien "GdkEvent any type")

7→
(#[primitive c-peek-int] alien 0)

(C-> alien "gfloat")

7→
(#[primitive c-peek-float] alien 0)

A three argument form of the syntax provides an alien to receive a peeked pointer. This
avoids consing a new alien.

(C-> alien "GtkWidget style" alien)

The above syntax is understood to say “The data at this alien address is a GtkWidget.
Load its style member (an alien address), into alien (clobbering alien’s old address).”

Chapter 1: Introduction 4

The C-enum, C-sizeof and C-offset syntaxes all transform into integer constants. The
last two transform into a padded byte size and a byte offset respectively.

(C-enum "GTK_WINDOW_POPUP")

7→
1

(C-sizeof "GdkColor")

7→
12

(C-offset "GdkColor blue")

7→
8

The two element form of the C-enum syntax can be used to find the name of a constant
given its runtime value. It expects the name of an enum type in a constant string. If the
runtime (second) argument is not one of the constants declared by that type, the returned
value is #f.

(C-enum "GdkEventType" (C-> #@42 "GdkEvent any type"))

⇒

|GDK_MAP|

The c-array-loc and c-array-loc! syntaxes compute the locations of C array ele-
ments. They can be used to advance a scan pointer or locate an element by its index. The
examples in the synopsis might expand as shown here.

(C-array-loc #@43 "GdkColor" (C-enum "GTK_STATE_NORMAL"))

7→
(alien-byte-increment #@43 (* (C-sizeof "GdkColor")

(C-enum "GTK_STATE_NORMAL")))

7→
(alien-byte-increment #@43 0)

⇒

#@44

(C-array-loc! #@43 "GdkColor" (C-enum "GTK_STATE_PRELIGHT"))

7→
(alien-byte-increment! #@43 (* (C-sizeof "GdkColor")

(C-enum "GTK_STATE_PRELIGHT")))

7→
(alien-byte-increment! #@43 24)

⇒

#@43

A simple scan of characters in the wide string alien might look like this.

(let ((len (C-> alien "toolkit_string_type int_member"))

(scan (C-> alien "toolkit_string_type array_member")))

(let loop ((n 0))

(if (< n len)

(let ((wchar (C-> scan "wchar")))

(process wchar)

Chapter 1: Introduction 5

(C-array-loc! scan "wchar" 1)

(loop (1+ n))))))

That is a quick look at the facilities. The next section describes the C declaration
language, and the following sections examine the FFI’s syntax and runtime facilities in
detail. Final sections provide an example program and show how its dynamically loaded
shim is built.

Chapter 2: C Declarations 6

2 C Declarations

A shim between Scheme and a C toolkit is specified by a case sensitive ‘.cdecl’ file contain-
ing Scheme-like declarations of all relevant toolkit types, constants, and functions. Callback
functions to be passed to the toolkit are also specified here.

There are some limitations on the C types that can be declared. Basic, struct, union,
enum and pointer types are allowed, but bit-field members are not supported. C function
parameters can be basic, enum or pointer types. The return type of a C function is the
same plus void. Basically, no struct or union argument or return types, at the moment.

Each top-level form in the C declaration file must look like one of these:
(include "filename")

(typedef Name any)

(struct Name (Member type) ...)

(union Name (Member type) ...)

(enum Name (Member) ...)

(extern return-type Name (param1 arg-type) ...)

(callback return-type Name (param1 arg-type) ...)

An enum’s Name is optional.

arg-type is currently restricted to the following forms. It is assumed that a lone Name
is defined as a type on this list:

Name

basics

(* any)

(enum Name)

(enum Name (Member) ...)

return-type can be either arg-type or the word void.

basics can be any of the words: char, uchar, short, ushort, int, uint, long, ulong,
float, or double (all lowercase).

type includes structs and unions:
arg-type

(struct Name)

(struct Name (Member type) ...)

(union Name)

(union Name (Member type) ...)

any is any type or void.

The include expression includes another ‘.cdecl’ file in the current ‘.cdecl’ file. The
string argument is interpreted relative to the current file’s directory.

While the informal grammar above allows anonymous structs to be specified for argument
or member types, they are of little use outside top-level, named struct or union declarations.
The peek and poke (C-> and C->=) syntax expects a type name (e.g. "GdkEventAny" or
"struct _GdkEventAny") before any member names.

(C-include "prhello")

The C-include syntax takes a library name and loads the corresponding ‘-types’ and
‘-const’ files at syntax time. This makes the C types and constants available to the other
C-... syntax expanders. The form binds c-includes in the syntax environment unless it
is already defined there. Thus a (C-includes "library") form can be placed at the top
of every file with C-... syntax, or loaded into the syntax-time environment of those files.

Chapter 3: Alien Data 7

3 Alien Data

A C data structure is represented by an alien containing the data structure’s memory
address. “Peek” primitives are available to read pointers and the basic C types (e.g. ints,
floats) at small (fixnum) offsets from an alien’s address. They return to Scheme an alien
address, integer or flonum as appropriate. “Poke” primitives do the reverse, storing pointers,
integers or floats at fixnum offsets from alien addresses. Other procedures on aliens are
alien?, alien-null?, alien-null!, copy-alien, alien=?, alien-byte-increment, and
c-peek-cstring. Refer to ‘ffi.pkg’ in The Source for a complete list.

The C-> and C->= syntaxes apply the peek and poke primitives to constant offsets.
They expect their first argument subform to be a constant string — space-separated words
naming a C type and any member to be accessed. A member within a struct or union
member is specified by appending its name. For example "struct _GdkEvent any window"

would specify a peek at the window member of the any member of the struct _GdkEvent

data at some alien address. Note that the final member’s type must be a basic C type,
pointer type, or enum type. Otherwise, an error is signaled at syntax time.

(C-> alien "struct _GdkEvent any window" window-alien)

7→
(#[primitive c-peek-pointer] alien 0 window-alien)

⇒

#[alien 44 (* GdkWindow) 0x081afc60]

Note that in the example above, the final member has a pointer type. In this case an
extra alien argument can be provided to receive the peeked pointer. Otherwise a new alien
is created and returned.

Malloc

The malloc procedure returns an alien that will automatically free the malloced memory
when it is garbage collected. It can also be explicitly freed with the free procedure.
The alien address can be incremented to scan the malloced memory, then freed (without
returning it to the original, malloced address). A band restore marks all malloced aliens as
though they have been freed.

(free (malloc ’|GdkRectangle|))

Chapter 4: Alien Functions 8

4 Alien Functions

The C-call syntax produces code that applies call-alien to an alien function structure
— a cache for the callout trampoline’s entry address.

(C-call "gtk_button_new" (make-alien ’(* |GtkWidget|)))

7→
(call-alien ’#[alien-function gtk_button_new] (make-alien ...))

The alien function contains all the information needed to load the callout trampoline on
demand (i.e. its name and library). Once the alien function has cached the entry address,
call-alien can invoke the trampoline (via #[primitive c-call]). The trampoline gets
its arguments off the Scheme stack, converts them to C values, calls the C function, conses
a result, and returns it to Scheme. As a special case a function returning a pointer type
expects an extra first argument. If this argument is #f, the return value is discarded. If the
argument is an alien, the function’s return value clobbers the alien’s address. This makes
it easy to grab pointers to toolkit resources without dropping them, or avoid unnecessary
consing of aliens.

The alien-function structures are fasdumpable. The caching mechanism invalidates
the cache when a band is restored, or a fasdumped object is fasloaded. The alien function
will lookup the trampoline entry point again on demand.

Chapter 5: Callbacks 9

5 Callbacks

A callback declaration must include a parameter named “ID”. The ID argument will be used
to find the Scheme callback procedure. It must be the same “user data” value provided to
the toolkit when the callback was registered. For example, a callback trampoline named
Scm_delete_event might be declared like this:

(callback gint

delete_event

(window (* GtkWidget))

(event (* GdkEventAny))

(ID gpointer))

The callback might be registered with the toolkit like this:
(C-call "g_signal_connect" window "delete_event"

(C-callback "delete_event") ; e.g. &Scm delete event
(C-callback ; e.g. 314
(lambda (window event)

(C-call "gtk_widget_destroy" window)

0)))

The toolkit’s registration function, g_signal_connect, would be declared like this:
(extern void

g_signal_connect

(object (* GtkObject))

(name (* gchar))

(CALLBACK GtkSignalFunc)

(ID gpointer))

This function should have parameters named CALLBACK and ID. The callout trampoline
will convert the callback argument from a Scheme alien function to an entry address. The
ID argument will be converted to a C integer and then cast to its declared type (in this
example, gpointer).

Note that the registered callback procedures are effectively pinned. They cannot be
garbage collected. They are “on call” to handle callbacks from the toolkit until they are
explicitly de-registered. A band restore automatically de-registers all callbacks.

The callback procedures are executed like an interrupt handler. They actually interrupt
the thread executing the most recent callout, e.g. to gtk_main. The thread runs with
thread switching disabled for the duration of the callback, and can callout to the toolkit,
which can callback again. The (nested) callbacks and nested callouts all run in the same
thread, and so will return in LIFO order as expected by the toolkit. Note that the runtime
system will not balk at a callback procedure that calls yield-thread, waits for I/O, sleeps,
or otherwise causes a thread switch. Presumably such a procedure has some other way of
enforcing the LIFO ordering.

The outf-console procedure is provided for debugging purposes. It writes one or more
argument strings (and writes any non-strings) to the console and flushes, atomically, via
a machine primitive, bypassing the runtime’s I/O buffering and thread switching. Thus
multiple debugging trace messages arrive on the console intact and uninterrupted.

Chapter 6: Compiling and Linking 10

6 Compiling and Linking

The c-generate procedure takes a library name and an optional preamble. It reads the
‘library.cdecl’ file and writes two ‘.c’ files. The preamble is included at the top of both.
It typically contains #include C pre-processor directives required by the C library, but
could include additional shim code. Here is a short script that generates a shim for the
example “Hello, World!” program.

(load-option ’FFI)

(c-generate "prhello" "#include <gtk/gtk.h>")

This script will produce three files:

‘prhello-shim.c’
This file contains the trampoline functions — one for each declared C extern
or callback. It includes the ‘mit-scheme.h’ header file, found in the AUXDIR

directory — e.g. ‘/usr/local/lib/mit-scheme/’.

‘prhello-const.c’
This file contains a C program that creates ‘prhello-const.scm’. It is compiled
and linked as normal for programs using the toolkit, and does not depend on the
Scheme machine. It does not actually call any toolkit functions. It just collects
information from the compiler about the declared C types and constants.

‘prhello-types.bin’
This file is a fasdumped c-includes structure containing all of the types, con-
stants and functions declared in the ‘.cdecl’ file.

The following Makefile rules describe the process of building and installing a shim for
the example “Hello, World!” program.

install-example: build-example

$(INSTALL_DATA) prhello-types.bin ../lib/.

$(INSTALL_DATA) prhello-const.bin ../lib/.

$(INSTALL_DATA) prhello-shim.so ../lib/.

build-example: prhello-shim.so prhello-types.bin prhello-const.bin

prhello-shim.so: prhello-shim.o

$(CC) -shared -fPIC -o $@ $^ ‘pkg-config --libs gtk+-2.0‘

prhello-shim.o: prhello-shim.c

$(CC) -I../lib -Wall -fPIC ‘pkg-config --cflags gtk+-2.0‘ -o $@ -c $<

prhello-shim.c prhello-const.c prhello-types.bin: prhello.cdecl

(echo "(load-option ’FFI)"; \

echo ’(C-generate "prhello" "#include <gtk/gtk.h>")’) \

| ../microcode/scheme --library ../lib --batch-mode

prhello-const.bin: prhello-const.scm

echo ’(sf "prhello-const")’ | mit-scheme --compiler --batch-mode

Chapter 6: Compiling and Linking 11

prhello-const.scm: prhello-const

./prhello-const

prhello-const: prhello-const.o

@rm -f $@

$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $^ ‘pkg-config --libs gtk+-2.0‘

prhello-const.o: prhello-const.c

$(CC) ‘pkg-config --cflags gtk+-2.0‘ $(CFLAGS) -o $@ -c $<

Chapter 7: Hello World 12

7 Hello World

This chapter includes the C declarations and Scheme code required to implement Havoc
Pennington’s Hello World example from GGAD. For an extra, Schemely treat, its delete_
event callback is a Scheme procedure closed over a binding of counter that is used to
implement some impertinent behavior.

#| -*-Scheme-*-

This is Havoc Pennington’s Hello World example from GGAD, in the raw

FFI. Note that no arrangements have been made to de-register the

callbacks. |#

(declare (usual-integrations))

(C-include "prhello")

(define (hello)

(C-call "gtk_init" 0 null-alien)

(let ((window (let ((alien (make-alien ’|GtkWidget|)))

(C-call "gtk_window_new" alien

(C-enum "GTK_WINDOW_TOPLEVEL"))

(if (alien-null? alien) (error "Could not create window."))

alien))

(button (let ((alien (make-alien ’|GtkWidget|)))

(C-call "gtk_button_new" alien)

(if (alien-null? alien) (error "Could not create button."))

alien))

(label (let ((alien (make-alien ’|GtkWidget|)))

(C-call "gtk_label_new" alien "Hello, World!")

(if (alien-null? alien) (error "Could not create label."))

alien)))

(C-call "gtk_container_add" button label)

(C-call "gtk_container_add" window button)

(C-call "gtk_window_set_title" window "Hello")

(C-call "gtk_container_set_border_width" button 10)

(let ((counter 0))

(C-call "g_signal_connect" window "delete_event"

(C-callback "delete_event") ;trampoline

(C-callback ;callback ID

(lambda (w e)

(outf-console ";Delete me "(- 2 counter)" times.\n")

(set! counter (1+ counter))

;; Three or more is the charm.

(if (> counter 2)

(begin

(C-call "gtk_main_quit")

0)

http://developer.gnome.org/doc/GGAD/

Chapter 7: Hello World 13

1))))

(C-call "g_signal_connect" button "clicked"

(C-callback "clicked") ;trampoline

(C-callback ;callback ID

(lambda (w)

(let ((gstring (make-alien ’(* |gchar|))))

(C-call "gtk_label_get_text" gstring label)

(let ((text (c-peek-cstring gstring)))

(C-call "gtk_label_set_text" label

(list->string (reverse! (string->list text))))))

unspecific))))

(C-call "gtk_widget_show_all" window)

(C-call "gtk_main")

window))

Here are the C declarations.

#| -*-Scheme-*-

C declarations for prhello.scm. |#

(typedef gint int)

(typedef guint uint)

(typedef gchar char)

(typedef gboolean gint)

(typedef gpointer (* mumble))

(extern void

gtk_init

(argc (* int))

(argv (* (* (* char)))))

(extern (* GtkWidget)

gtk_window_new

(type GtkWindowType))

(typedef GtkWindowType

(enum

(GTK_WINDOW_TOPLEVEL)

(GTK_WINDOW_POPUP)))

(extern (* GtkWidget)

gtk_button_new)

(extern (* GtkWidget)

gtk_label_new

(str (* (const char))))

Chapter 7: Hello World 14

(extern void

gtk_container_add

(container (* GtkContainer))

(widget (* GtkWidget)))

(extern void

gtk_window_set_title

(window (* GtkWindow))

(title (* (const gchar))))

(extern void

gtk_container_set_border_width

(container (* GtkContainer))

(border_width guint))

(extern void

gtk_widget_show_all

(widget (* GtkWidget)))

(extern void

g_signal_connect

(object (* GtkObject))

(name (* gchar))

(CALLBACK GtkSignalFunc)

(ID gpointer))

(typedef GtkSignalFunc (* mumble))

(callback gboolean

delete_event

(window (* GtkWidget))

(event (* GdkEventAny))

(ID gpointer))

(callback void

clicked

(widget (* GtkWidget))

(ID gpointer))

(extern void

gtk_widget_destroy

(widget (* GtkWidget)))

(extern (* (const gchar))

gtk_label_get_text

(label (* GtkLabel)))

Chapter 7: Hello World 15

(extern void

gtk_label_set_text

(label (* GtkLabel))

(str (* (const char))))

(extern void gtk_main)

(extern void gtk_main_quit)

Appendix A: GNU Free Documentation License 16

Appendix A GNU Free Documentation License

Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

Appendix A: GNU Free Documentation License 17

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Appendix A: GNU Free Documentation License 18

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

Appendix A: GNU Free Documentation License 19

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

Appendix A: GNU Free Documentation License 20

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

Appendix A: GNU Free Documentation License 21

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warrany Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 22

A.1 ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

