FLTK 1.3.0 Programming Manual

(k)

Revision 9 by F. Costantini, D. Gibson, M. Melcher,
A. Schlosser, B. Spitzak and M. Sweet.

Copyright 1998-2011 by Bill Spitzak and others.

Generated by Doxygen 1.7.3

May 15, 2011

Contents

FLTK Programming Manual

Preface

2.1 Organization oo e e e e e e e e e e e e e e
2.2 Conventions vt it e e e e e e e e e e e e e e e e e
2.3 ADDreviations e e e e e e e e e e
2.4 Copyrights and Trademarks e
Introduction to FLTK

3.1 History of FLTK e
3.2 Features e e e e e
3.3 LICENSING . . v v v v o e e e e e e e e e e e e e e e e
3.4 What Does "FLTK" Mean? it
3.5 Building and Installing FLTK Under UNIX and Apple OS X
3.6 Building FLTK Under Microsoft Windows
3.7 Internet Resources e
3.8 Reporting Bugs e e e e
FLTK Basics

4.1 Writing Your First FLTK Program
4.2 Compiling Programs with Standard Compilers
4.3 Compiling Programs with Makefiles
4.4 Compiling Programs with Microsoft Visual C++.
45 Namingo ot
4.6 HeaderFiles e

Common Widgets and Attributes

S0 BUttons e e e
5.2 Text . . o e e e e
53 Valuators
54 GIoups. . . o v v i e e e e e e e
5.5 Setting the Size and Position of Widgets
56 Colors e e
57 BoxTypes . . . o o o o e e e e
5.8 Labelsand Label Types o o
59 Callbacks e e
5.10 Shorteuts L e e

Designing a Simple Text Editor

6.1 Determining the Goals of the Text Editor
6.2 Designing the Main Window L
6.3 Variables e e e e
6.4 Menubarsand Menus Lo e e e

wm b wWWw

O O 00 33

11

12

13
13
16
17
17
18
18

19
19
20
21
21
22
22
24
25
29
30

ii CONTENTS
6.5 Editingthe Text e e e 33
6.6 TheReplace Dialog 33
6.7 Callbacks 33
6.8 Other Functions 38
6.9 Themain() Function 39
6.10 Compiling the Editor L 40
6.11 The Final Product e 40
6.12 Advanced Features 41
7 Drawing Things in FLTK 47
7.1 When Can You Draw Things in FLTK? 47
7.2 Drawing Functions 47
T3 Colors o e e e 49
7.4 Drawing Images e e e e e e e e 59
8 Handling Events 65
8.1 The FLTKEventModel e 65
82 MouseEvents 65
83 FocusEvents e 66
84 Keyboard Events e e e 67
85 WidgetEvents 67
8.6 Clipboard Events e 68
87 DragandDropEvents 68
8.8 Flievent_x()methods e 69
8.9 EventPropagation. 70
8.10 FLTK Compose-Character SeqUences v v v v v v v v v i i v et e 71
9 Adding and Extending Widgets 73
9.1 Subclassing 73
9.2 Making a Subclassof FI_Widget 73
9.3 The Constructor e 73
9.4 Protected Methods of F1_Widget 74
9.5 HandlingEvents. 77
9.6 Drawingthe Widget L 78
9.7 Resizingthe Widget L e e 78
9.8 Making a Composite Widget 78
9.9 Cutand Paste Support. L e e 80
9.10 Drag And Drop Support. e 80
9.11 Making asubclassof FI_ Window 81
10 Using OpenGL 83
10.1 Using OpenGL in FLTK e 83
10.2 Making a Subclass of FI_GI_Window 83
10.3 Using OpenGL in Normal FLTK Windows 85
10.4 OpenGL Drawing Functions 86
10.5 Speedingup OpenGL e 87
10.6 Using OpenGL Optimizer with FLTK 0oL . 88
11 Programming with FLUID 91
11.1 Whatis FLUID? 91
11.2 Running FLUID Under UNIX 92
11.3 Running FLUID Under Microsoft Windows 93
11.4 Compiling flfiles 93
11.5 AShort Tutorial L e 93

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

CONTENTS iii
11.6 FLUID Reference 0 e e e e e e e 101
11.7 GUITAHribUtes o o o e e e e e e e e e e e e e e 109
11.8 Selecting and Moving Widgets 116
11.9 Image Labels e e e 116
11.10Internationalization with FLUID 118
11.11Known limitations o o o e e e e e e e e e e e e e 120

12 Advanced FLTK 121
12.1 Multithreading 121

13 Unicode and UTF-8 Support 123
13.1 About Unicode, ISO 10646 and UTF-8 123
13.2 Unicode in FLTK e e 125
13.3 Tllegal Unicode and UTF-8 sequences v v v v v v v v i i .. 126
13.4 FLTK Unicode and UTF-8 functions 126
13.5 FLTK Unicode versions of systemcalls 129

14 FLTK Enumerations 131
14.1 Version Numbers 0 i e e e e e e e e e e 131
142 BEvents o e e e e e e e e e e e e 131
14.3 Callback "When" Conditions i 132
14.4 Fl::event_button() Values 133
14.5 Flievent_key() Values 133
14.6 Flievent_state() Values e 134
14.7 Alignment Values L e 134
14.8 FONIS o o e e e e e e e e 135
14.9 Colors o o e e e e e 136
T4 T0CUISOTS + & v v o o e 137
14.11FD "When" Conditions o v v v ittt e e e e e e e 138
14.12Damage Masks L e e e e 138

15 GLUT Compatibility 139
15.1 Using the GLUT Compatibility Header File 139
15.2 Known Problems e 139
15.3 Mixing GLUT and FLTK Code 140
154 class FI_Glut_Window e 141

16 Forms Compatibility 143
16.1 Importing Forms Layout Files 143
16.2 Using the Compatibility Header File 143
16.3 Problems You Will Encounter 144
16.4 Additional Notes e e e 146

17 Operating System Issues 149
17.1 Accessing the OS Interfaces i 149
17.2 The UNIX (X11) Interface i i i it 149
17.3 The Windows (WIN32) Interface 155
17.4 The Apple OS X Interface 158

18 Migrating Code from FLTK 1.0 to 1.1 161
18.1 Color Values. e e e e e e e e e 161
18.2 Cutand Paste Support 161
183 File ChoOoSer o i e e e e e e e e e e e e e e e e e e 161
18.4 Function Names o v v i e e e e e e e e e e e e e 161
18.5 ITmage Support e 162

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

iv CONTENTS
18.6 Keyboard Navigation o v i i ittt et e e 162
19 Migrating Code from FLTK 1.1 to 1.3 163
19.1 Migrating From FLTK 1.0 o 163
19.2 Fl_Scroll Widget e e e 163
19.3 Unicode (UTF-8) e e e e e e e e e 163
19.4 Widget Coordinate Representation 164
20 Developer Information 165
20.1 Non-ASCII Characters o v v v i ittt e e et e e e e 167
20.2 Document StruCtUIe v vt vt et e e e e e e e 167
20.3 Creating Links e e 168
20.4 Paragraph Layout L 168
20.5 Navigation Elements e 169
21 Software License 171
22 Example Source Code 179
22.1 Example Applications e e e 179
23 Todo List 189
24 Deprecated List 193
25 Module Index 195
25.1 Modules e e e e 195
26 Class Index 197
26.1 ClassHierarchy 197
27 Class Index 201
27.1 ClassList o o o e e e e 201
28 File Index 209
28.1 File List o e 209
29 Module Documentation 215
29.1 Callback function typedefs 215
29.2 Windows handling functions 216
29.3 Events handling functions L o 218
29.4 Selection & Clipboard functions oL 232
29.5 Screen functions e e 234
29.6 Color & Font functions e 236
29.7 Drawing functions L. e 245
29.8 Multithreading support functions L 264
29.9 Safe widget deletion support functions 266
29.10Cairo support functionsand classes L o 269
29.11Unicode and UTF-8 functions it .. 270
29.12Mac OS X-specific symbols e 279
29.13Common Dialogs classes and functions oL 280
29.14File names and URI utility functions 290
30 Class Documentation 297
30.1 Fl_Preferences::Entry Struct Reference 297
30.2 FlClassReference e 297

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

CONTENTS v

30.3 Fl_Adjuster Class Reference 318
30.4 Fl_Bitmap Class Reference e 320
30.5 FI_BMP_Image Class Reference, 323
30.6 Fl_Box Class Reference e 324
30.7 Fl_Browser Class Reference e 326
30.8 Fl_Browser_Class Reference e 346
30.9 Fl_Button Class Reference 362
30.10FI_Cairo_State Class Reference 367
30.11F1_Cairo_Window Class Reference 368
30.12FI_Chart Class Reference e 369
30.13FL_CHART_ENTRY Struct Reference 374
30.14F1_Check_Browser Class Reference 374
30.15F1_Check_Button Class Reference 378
30.16F1_Choice Class Reference e 379
30.17F1_Clock Class Reference o o i i i i e 382
30.18F1_Clock_Output Class Reference 385
30.19F1_Color_Chooser Class Reference v v i it . 388
30.20FI_Counter Class Reference, 393
30.21F1_Device Class Reference e 396
30.22F1_Device_Plugin Class Reference 397
30.23F1_Dial Class Reference o e 398
30.24F1_Display_Device Class Reference 400
30.25F1_Double_Window Class Reference 402
30.26FI_End Class Reference i i e 405
30.27F1_File_Browser Class Reference 406
30.28F1_File_Chooser Class Reference i i it 408
30.29F1_File _Icon Class Reference @ 0 o v i i i e 416
30.30F1_File_Input Class Reference 421
30.31FI_Fill_Dial Class Reference 424
30.32F1_Fill_Slider Class Reference i 424
30.33F1_Float_Input Class Reference 425
30.34F1_Font_Descriptor Class Reference 426
30.35F1_Fontdesc Struct Reference 427
30.36F1_FormsBitmap Class Reference 427
30.37F1_FormsPixmap Class Reference, 428
30.38F1_Free Class Reference o 430
30.39F1_GDI_Graphics_Driver Class Reference 433
30.40F1_GIF_Image Class Reference 437
30.41FI_GI_Choice Class Reference 438
30.42F1_Gl_Window Class Reference 438
30.43F1_Glut_Bitmap_Font Struct Reference 445
30.44F1_Glut_StrokeChar Struct Reference 446
30.45F1_Glut_StrokeFont Struct Reference 446
30.46F1_Glut_StrokeStrip Struct Reference 446
30.47F1_Glut_StrokeVertex Struct Reference 447
30.48F1_Glut_Window Class Reference 447
30.49F1_Graphics_Driver Class Reference 449
30.50F1_Group Class Reference 475
30.51F1_Help_Block Struct Reference, 485
30.52F1_Help_Dialog Class Reference 486
30.53F1_Help_Font_Stack Struct Reference, 489
30.54F1_Help_Font_Style Struct Reference 490
30.55F1_Help_Link Struct Reference 490
30.56F1_Help_Target Struct Reference 491

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

vi CONTENTS
30.57F1_Help_View Class Reference 492
30.58F1_Hold_Browser Class Reference 499
30.59F1_Hor_Fill_Slider Class Reference 500
30.60F1_Hor Nice_Slider Class Reference 501
30.61F1_Hor_Slider Class Reference i e 501
30.62F1_Hor_Value_Slider Class Reference 502
30.63F]_Image Class Reference i 502
30.64F]_Input Class Reference 506
30.65F1_Input_ Class Reference 508
30.66F1_Input_Choice Class Reference 525
30.67F_Int_Input Class Reference 529
30.68FI_JPEG_Image Class Reference 529
30.69FI_Label Struct Reference 531
30.70F1_Light_Button Class Reference, 532
30.71F1_Line_Dial Class Reference i 534
30.72F1_Mac_App_Menu Class Reference, . 535
30.73F1_Menu_ Class Reference e 536
30.74F1_Menu_Bar Class Reference 549
30.75F1_Menu_Button Class Reference 552
30.76F1_Menu_Item Struct Reference 555
30.77F1_Menu_Window Class Reference 568
30.78F1_Multi_Browser Class Reference e 570
30.79F1_Multi_Label Struct Reference 571
30.80F1_Multiline_Input Class Reference 571
30.81F1_Multiline_Output Class Reference 572
30.82F1_Native_File Chooser Class Reference 573
30.83F1_Nice_Slider Class Reference o i 581
30.84F1_Output Class Reference ittt 581
30.85F1_Overlay_Window Class Reference 583
30.86F1_Pack Class Reference e 585
30.87F1_Paged_Device Class Reference 587
30.88F1_Pixmap Class Reference 594
30.89F1_Plugin Class Reference i i 597
30.90F1_Plugin_Manager Class Reference 598
30.91FI_PNG_Image Class Reference 600
30.92F1_PNM_Image Class Reference 601
30.93F1_Positioner Class Reference 602
30.94F1_PostScript_File_Device Class Reference 606
30.95F1_PostScript_Graphics_Driver Class Reference 611
30.96F1_PostScript_Printer Class Reference 622
30.97F1_Preferences Class Reference 624
30.98F1 Printer Class Reference e 637
30.99F1_Progress Class Reference 644
30.10F1_Quartz_Graphics_Driver Class Reference 646
30.10F1_Radio_Button Class Reference 650
30.10F1_Radio_Light_Button Class Reference 651
30.10F1_Radio_Round_Button Class Reference 651
30.10F1_Repeat_Button Class Reference 652
30.10¥1_Return_Button Class Reference 653
30.1061_RGB_Image Class Reference 655
30.10F1_Roller Class Reference e 659
30.1081_Round_Button Class Reference 661
30.1091_Round_Clock Class Reference i it i s 661
30.1101_Scroll Class Reference o i i i e e e 662

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

CONTENTS vii

30.11F1_Scrollbar Class Reference i i i i e e 667
30.11F1_Secret_Input Class Reference 671
30.11F1_Select_Browser Class Reference 672
30.11#1_Shared_Image Class Reference 673
30.11¥1_Simple_Counter Class Reference 677
30.11&1_Single_Window Class Reference 678
30.11FI_Slider Class Reference i ittt 680
30.11%1_Spinner Class Reference 683
30.1191_Surface_Device Class Reference 688
30.1201_Sys_Menu_Bar Class Reference 690
30.12F1_System_Printer Class Reference 694
30.12F1_Table Class Reference e 699
30.12F1 Table Row Class Reference v i 717
30.12F1 _Tabs Class Reference o 720
30.12F1_Text_Buffer Class Reference 723
30.12&1_Text_Display Class Reference 738
30.12F1_Text_Editor Class Reference 768
30.128%1_Text_Selection Class Reference . 774
30.1291 Tile Class Reference o o o o e 776
30.1301_Tiled_Image Class Reference 779
30.13F1_Timer Class Reference e 781
30.13F1_Toggle_ Button Class Reference 784
30.13F1_Tooltip Class Reference 784
30.13F1_Tree Class Reference e 788
30.13F%1_Tree_Item Class Reference 0 o i i i s 815
30.1361_Tree_Item_Array Class Reference 825
30.13F1_Tree_Prefs Class Reference i i 827
30.13%1_Valuator Class Reference e 831
30.13%1_Value_Input Class Reference 836
30.14F1_Value_Output Class Reference 840
30.14F1_Value_Slider Class Reference 844
30.14F1_Widget Class Reference e 846
30.14F1_Widget_Tracker Class Reference 880
30.14#1_Window Class Reference e 882
30.14¥%1_Wizard Class Reference e 896
30.1461_XBM_Image Class Reference 897
30.14F1_XColor Struct Reference 898
30.14¥1_Xlib_Graphics_Driver Class Reference 898
30.14%1_XPM_Image Class Reference 903
30.150ActivelMMApp Class Reference L 904
30.15F1_Text_Editor::Key_Binding Struct Reference 906
30.15F1_Graphics_Driver::matrix Struct Reference 906
30.15F1_Preferences::Name Class Reference 907
30.15¥1_Paged_Device::page_format Struct Reference 908
30.15¥%1_Text_Display::Style_Table_Entry Struct Reference 908
30.15&Utf8FontStruct Struct Reference 909
31 File Documentation 911
31.1 Enumerations.H File Reference 911
31.2 FLHFile Reference . e 931
31.3 fl_arc.cxx File Reference e 932
31.4 fl_arci.cxx File Reference e 932
31.5 fl_boxtype.cxx File Reference 933
31.6 fl_color.cxx File Reference e 934

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

viii CONTENTS

31.7 Fl_Color_Chooser.H File Reference 935
31.8 fl_curve.cxx File Reference 936
31.9 Fl_Device.H File Reference . 936
31.10fl_draw.H File Reference e 937
31.11fl_line_style.cxx File Reference 943
31.12FI_Native_File_Chooser.H File Reference 943
31.13F1_Paged_Device.cxx File Reference 943
31.14F1_Paged_Device.H File Reference 944
31.15F1_PostScript.H File Reference 944
31.16FI_Printer.H File Reference 945
31.17f_rect.cxx File Reference e 945
31.18F1_Shared_Image.H File Reference 945
31.191]_show_colormap.H File Reference 946
31.20F1_Tree.H File Reference e 947
31.21F1_Tree_Item.H File Reference 947
31.22F]1_Tree_Item_Array.H File Reference 948
31.23F1_Tree_Prefs.H File Reference 948
31.24fl _types.h File Reference 950
31.25f_utf8.h File Reference e 950
31.26f1_vertex.cxx File Reference 952
31.27F1_Widget.H File Reference 952
31.28gl.h File Reference e e 954

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

Chapter 1

FLTK Programming Manual

FLTK 1.3.0 Programming Manual

(\i Revision 9 by F. Costantini, D. Gibson,
\ / M. Melcher, A. Schlosser, B. Spitzak and

M. Sweet.

Copyright 1998-2011 by Bill Spitzak and others.

This software and manual are provided under the terms of the GNU Library General Public License.
Permission is granted to reproduce this manual or any portion for any purpose, provided this copyright
and permission notice are preserved.

FLTK Programming Manual

Preface

Introduction to FLTK

FLTK Basics

Common Widgets and Attributes

* Colors

* Box Types

* Labels and Label Types
* Drawing Images

Designing a Simple Text Editor
Drawing Things in FLTK
Handling Events

¢ Fl::event_x() methods
» Event Propagation

Adding and Extending Widgets
Using OpenGL
Programming with FLUID

¢ GUI Attributes

* Selecting and Moving Widgets

* Image Labels

Advanced FLTK
Unicode and UTF-8 Support

Appendices:

FLTK Enumerations

GLUT Compatibility
— class F1_Glut_Window

Forms Compatibility

Operating System Issues

Migrating Code from FLTK 1.0 to 1.1
Migrating Code from FLTK 1.1 to 1.3
Developer Information

Software License

Example Source Code

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

Chapter 2

Preface

This manual describes the Fast Light Tool Kit ("FLTK") version 1.3.0, a C++ Graphical User Interface
("GUI") toolkit for UNIX, Microsoft Windows and Apple OS X.

Each of the chapters in this manual is designed as a tutorial for using FLTK, while the appendices provide
a convenient reference for all FLTK widgets, functions, and operating system interfaces.

This manual may be printed, modified, and/or used under the terms of the FLTK license provided
in Software License.

2.1 Organization
This manual is organized into the following chapters and appendices:

* Introduction to FLTK

* FLTK Basics

¢ Common Widgets and Attributes
* Designing a Simple Text Editor
* Drawing Things in FLTK

* Handling Events

* Adding and Extending Widgets
» Using OpenGL

* Programming with FLUID

e Advanced FLTK

* Unicode and UTF-8 Support

e FLTK Enumerations

e GLUT Compatibility

* Forms Compatibility

* Operating System Issues

4 Preface

* Migrating Code from FLTK 1.0to 1.1
* Migrating Code from FLTK 1.1 to 1.3
* Developer Information

* Software License

» Example Source Code

2.2 Conventions

This manual was generated using Doxygen (see http://www.doxygen.org/) to process the source
code itself, special comments in the code, and additional documentation files. In general, Doxygen recog-
nizes and denotes the following entities as shown:

* classes, such as F1_Widget,

* methods, such as F1_Widget::callback(F1l_Callbackx cb, voidx p),
* functions, such as fl_draw(const char *str, int X, int y),

e internal links, such as Conventions,

e external links, such as http://www.stack.nl/~dimitri/doxygen/

Other code samples and commands are shown in regular courier type.

2.3 Abbreviations

The following abbreviations are used in this manual:

X11

The X Window System version 11.

Xlib
The X Window System interface library.

MS Windows, WIN32

The Microsoft Windows Application Programmer’s Interface for Windows 2000, Windows XP, Win-
dows Vista, and Windows 7. FLTK uses the preprocessor definition WIN32 for the 32 bit and 64 bit
MS Windows API.

OSX,_APPLE__

The Apple desktop operating sytem OS X 10.0 and later. MacOS 8 and 9 support was dropped after
FLTK 1.0.10. FLTK uses the preprocessor definition __ APPLE___ for OS X.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

http://www.doxygen.org/
http://www.stack.nl/~dimitri/doxygen/

2.4 Copyrights and Trademarks 5

2.4 Copyrights and Trademarks

FLTK is Copyright 1998-2011 by Bill Spitzak and others. Use and distribution of FLTK is governed by
the GNU Library General Public License with 4 exceptions, located in Software License.

UNIX is a registered trademark of the X Open Group, Inc. Microsoft and Windows are registered trade-
marks of Microsoft Corporation. OpenGL is a registered trademark of Silicon Graphics, Inc. Apple,
Macintosh, MacOS, and Mac OS X are registered trademarks of Apple Computer, Inc.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

Preface

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

Chapter 3

Introduction to FLTK

The Fast Light Tool Kit ("FLTK", pronounced "fulltick") is a cross-platform C++ GUI toolkit for UNI-
X®/Linux®(X11), Microsoft®Windows®, and Apple®OS X®.

FLTK provides modern GUI functionality without the bloat and supports 3D graphics via OpenGL®and
its built-in GLUT emulation. It was originally developed by Mr. Bill Spitzak and is currently maintained
by a small group of developers across the world with a central repository in the US.

3.1 History of FLTK

It has always been Bill’s belief that the GUI API of all modern systems is much too high level. Toolkits
(even FLTK) are not what should be provided and documented as part of an operating system. The system
only has to provide arbitrary shaped but featureless windows, a powerful set of graphics drawing calls, and
a simple unalterable method of delivering events to the owners of the windows. NeXT (if you ignored
NextStep) provided this, but they chose to hide it and tried to push their own baroque toolkit instead.

Many of the ideas in FLTK were developed on a NeXT (but not using NextStep) in 1987 in a C toolkit Bill
called "views". Here he came up with passing events downward in the tree and having the handle routine
return a value indicating whether it used the event, and the table-driven menus. In general he was trying to
prove that complex Ul ideas could be entirely implemented in a user space toolkit, with no knowledge or
support by the system.

After going to film school for a few years, Bill worked at Sun Microsystems on the (doomed) NeWS
project. Here he found an even better and cleaner windowing system, and he reimplemented "views" atop
that. NeWS did have an unnecessarily complex method of delivering events which hurt it. But the designers
did admit that perhaps the user could write just as good of a button as they could, and officially exposed
the lower level interface.

With the death of NeWS Bill realized that he would have to live with X. The biggest problem with X is
the "window manager", which means that the toolkit can no longer control the window borders or drag the
window around.

At Digital Domain Bill discovered another toolkit, "Forms". Forms was similar to his work, but provided
many more widgets, since it was used in many real applications, rather than as theoretical work. He decided
to use Forms, except he integrated his table-driven menus into it. Several very large programs were created
using this version of Forms.

The need to switch to OpenGL and GLX, portability, and a desire to use C++ subclassing required a rewrite
of Forms. This produced the first version of FLTK. The conversion to C++ required so many changes it
made it impossible to recompile any Forms objects. Since it was incompatible anyway, Bill decided to

8 Introduction to FLTK

incorporate his older ideas as much as possible by simplifying the lower level interface and the event
passing mechanism.

Bill received permission to release it for free on the Internet, with the GNU general public license. Re-
sponse from Internet users indicated that the Linux market dwarfed the SGI and high-speed GL market, so
he rewrote it to use X for all drawing, greatly speeding it up on these machines. That is the version you
have now.

Digital Domain has since withdrawn support for FLTK. While Bill is no longer able to actively develop it,
he still contributes to FLTK in his free time and is a part of the FLTK development team.

3.2 Features

FLTK was designed to be statically linked. This was done by splitting it into many small objects and
designing it so that functions that are not used do not have pointers to them in the parts that are used, and
thus do not get linked in. This allows you to make an easy-to-install program or to modify FLTK to the
exact requirements of your application without worrying about bloat. FLTK works fine as a shared library,
though, and is now included with several Linux distributions.

Here are some of the core features unique to FLTK:

* sizeof(F1_Widget) == 64 to 92.

* The "core" (the "hello" program compiled & linked with a static FLTK library using gcc on a 486
and then stripped) is 114K.

* The FLUID program (which includes every widget) is 538k.

» Written directly atop core libraries (Xlib, WIN32 or Cocoa) for maximum speed, and carefully opti-
mized for code size and performance.

* Precise low-level compatibility between the X11, WIN32 and MacOS versions - only about 10% of
the code is different.

* Interactive user interface builder program. Output is human-readable and editable C++ source code.
* Support for overlay hardware, with emulation if none is available.

¢ Very small & fast portable 2-D drawing library to hide Xlib, WIN32, or QuickDraw.

* OpenGL/Mesa drawing area widget.

* Support for OpenGL overlay hardware on both X11 and WIN32, with emulation if none is available.
o Text widgets with cut & paste, undo, and support for Unicode text and international input methods.
» Compatibility header file for the GLUT library.

» Compatibility header file for the XForms library.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

3.3 Licensing 9

3.3 Licensing

FLTK comes with complete free source code. FLTK is available under the terms of the GNU Library
General Public License with exceptions that allow for static linking. Contrary to popular belief, it can be
used in commercial software - even Bill Gates could use it!

3.4 What Does "FLTK” Mean?

FLTK was originally designed to be compatible with the Forms Library written for SGI machines. In that
library all the functions and structures started with "fl_". This naming was extended to all new methods
and widgets in the C++ library, and this prefix was taken as the name of the library. It is almost impossible
to search for "FL" on the Internet, due to the fact that it is also the abbreviation for Florida. After much
debating and searching for a new name for the toolkit, which was already in use by several people, Bill
came up with "FLTK", including a bogus excuse that it stands for "The Fast Light Toolkit".

3.5 Building and Installing FLTK Under UNIX and Apple OS X

In most cases you can just type "make". This will run configure with the default of no options and then
compile everything.

For OS X, Xcode 3 project files can be found in the ’ide’ directory.

FLTK uses GNU autoconf to configure itself for your UNIX platform. The main things that the configure
script will look for are the X11 and OpenGL (or Mesa) header and library files. If these cannot be found
in the standard include/library locations you’ll need to define the CFLAGS, CXXFLAGS, and LDFLAGS
environment variables. For the Bourne and Korn shells you’d use:

CFLAGS=-Iincludedir; export CFLAGS
CXXFLAGS=-Iincludedir; export CXXFLAGS
LDFLAGS=-Llibdir; export LDFLAGS

For C shell and tcsh, use:

setenv CFLAGS "-Iincludedizr"
setenv CXXFLAGS "-Iincludedir"
setenv LDFLAGS "-Llibdir"

By default configure will look for a C++ compiler named CC, c++, g++, or gcc in that order. To use
another compiler you need to set the CXX environment variable:

CXX=x1C; export CXX
setenv CXX "x1C"

The CC environment variable can also be used to override the default C compiler (cc or gcc), which is
used for a few FLTK source files.

You can run configure yourself to get the exact setup you need. Type "./configure <options>", where
options are:

--enable-cygwin

Enable the Cygwin libraries under WIN32

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

10

Introduction to FLTK

--enable-debug
Enable debugging code & symbols
--disable-gl

Disable OpenGL support

--enable-shared

Enable generation of shared libraries

--enable-threads

Enable multithreading support

--enable-xdbe

Enable the X double-buffer extension

--enable-xft

Enable the Xft library for anti-aliased fonts under X11

--enable-x11

When targeting cygwin, build with X11 GUI instead of windows GDI
--enable-cp936

Under X11, enable use of the GB2312 locale
--bindir=/path

Set the location for executables [default = $prefix/bin]
--datadir=/path

Set the location for data files. [default = $prefix/share]
--libdir=/path

Set the location for libraries [default = $prefix/lib]
--includedir=/path

Set the location for include files. [default = $prefix/include]
--mandir=/path

Set the location for man pages. [default = $prefix/man]
--prefix=/dir

Set the directory prefix for files [default = /usr/local]

When the configure script is done you can just run the "make" command. This will build the library, FLUID

tool, and all of the test programs.

To install the library, become root and type "make install". This will copy the "fluid" executable to "bindir",

the header files to "includedir", and the library files to "libdir".

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

3.6 Building FLTK Under Microsoft Windows 11

3.6 Building FLTK Under Microsoft Windows

NOTE: This documentation section is currently under review. More up-to-date information for this release
may be available in the file "README.MSWindows.txt" and you should read that file to determine if there
are changes that may be applicable to your build environment.

FLTK 1.3 is officially supported on Windows (2000,) 2003, XP, and later. Older Windows versions prior
to Windows 2000 are not officially supported, but may still work. The main reason is that the OS version
needs to support UTF-8. FLTK 1.3 is known to work on recent versions of Windows such as Windows 7
and Vista and has been reported to work in both 32-bit and 64-bit versions of these.

FLTK currently supports the following development environments on the Windows platform:

CAUTION: Libraries built by any one of these build environments can not be mixed with object files from
any of the other environments! (They use incompatible C++ conventions internally.)

Free Microsoft Visual C++ 2008 Express and Visual C++ 2010 Express using the supplied workspace and
project files. Older versions, and the commercial versions, can be used as well, if they can open the project
files. Be sure to get your service packs!

The project files can be found in the "ide/" directory. Please read "ide/README.IDE" for more info about
this.

3.6.1 GNU toolsets (Cygwin or MinGW) hosted on Windows

If using Cygwin with the Cygwin shell, or MinGW with the Msys shell, these build environments behave
very much like a Unix or OS X build and the notes above in the section on Building and Installing FLTK
Under UNIX and Apple OS X apply, in particular the descriptions of using the "configure" script and its
related options.

In general for a build using these tools, e.g. for the Msys shell with MinGW, it should suffice to "cd" into
the directory where you have extracted the fltk tarball and type:

./configure
make

This will build the fltk libraries and they can then be utilised directly from the build location. NOTE: this
may be simpler than "installing" them in many cases as different tool chains on Windows have different
ideas about where the files should be "installed" to.

For example, if you "install" the libraries using Msys/MinGW with the following command:

make install

Then Msys will "install" the libraries to where it thinks the path "/usr/local/" leads to. If you only ever
build code from within the Msys environment this works well, but the actual "Windows path" these files
are located in will be something like "C:\msys\ 1.0\local\lib", depending on where your Msys installation
is rooted, which may not be useful to other tools.

If you want to install your built fltk libraries in a non-standard location you may do:

sh configure --prefix=C:/FLTK
make

Where the value passed to "prefix" is the path at which you would like fitk to be installed.
A subsequent invocation of "make install" will then place the fltk libraries and header files into that path.

The other options to "configure" may also be used to tailor the build to suit your environment.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

12 Introduction to FLTK

3.6.2 Using the Visual C++ DLL Library

The "fitkdll.dsp" project file builds a DLL-version of the FLTK library. Because of name mangling differ-
ences between PC compilers (even between different versions of Visual C++!) you can only use the DLL
that is generated with the same version compiler that you built it with.

When compiling an application or DLL that uses the FLTK DLL, you will need to define the FI,_DLL
preprocessor symbol to get the correct linkage commands embedded within the FLTK header files.

3.7 Internet Resources

FLTK is available on the "net in a bunch of locations:

WWWwW

http://www.fltk.org/

http://www.fltk.org/str.php [for reporting bugs]
http://www.fltk.org/software.php [source code]
http://www.fltk.org/newsgroups.php [newsgroup/forums]

FTP

http://ftp.easysw.com/pub/fltk [California, USA, via http]
ftp://ftp.easysw.com/pub/fltk [California, USA via ftp]
ftp://ftp2.easysw.com/pub/fltk [Maryland, USA]
ftp://ftp.funet.fi/pub/mirrors/ftp.easysw.com/pub/fltk [Espoo, Finland]

NNTP Newsgroups

news://news.easysw.com/ [NNTP interface]
http://fltk.org/newsgroups.php [web interface]

Point your NNTP news reader at news.easysw.com. At minimum, you’ll want to subscribe to the "fltk.general”
group for general FLTK questions and answers.

You can also use the web interface to the newsgroup; just go to the main http://fltk.org/ page and
click on "Forums".

3.8 Reporting Bugs

To report a bug in FLTK, or for feature requests, please use the form at http://www.fltk.org/st-
r.php, and click on "Submit Bug or Feature Request".

You’ll be prompted for the FLTK version, operating system & version, and compiler that you are using.
We will be unable to provide any kind of help without that basic information.

For general support and questions, please use the fitk.general newsgroup (see above, "NNTP Newsgroups")
or the web interface to the newsgroups at http://fltk.org/newsgroups.php.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

http://www.fltk.org/
http://www.fltk.org/str.php
http://www.fltk.org/software.php
http://www.fltk.org/newsgroups.php
http://ftp.easysw.com/pub/fltk
ftp://ftp.easysw.com/pub/fltk
ftp://ftp2.easysw.com/pub/fltk
ftp://ftp.funet.fi/pub/mirrors/ftp.easysw.com/pub/fltk
news://news.easysw.com/
http://fltk.org/newsgroups.php
http://fltk.org/
http://www.fltk.org/str.php
http://www.fltk.org/str.php
http://fltk.org/newsgroups.php

Chapter 4

FLTK Basics

This chapter teaches you the basics of compiling programs that use FLTK.

4.1 Writing Your First FLTK Program

All programs must include the file <FL/F1.H>. In addition the program must include a header file for
each FLTK class it uses. Listing 1 shows a simple "Hello, World!" program that uses FLTK to display the
window.

Listing 1 - "hello.cxx"

#include <FL/F1.H>
#include <FL/F1_Window.H>
#include <FL/F1l_Box.H>

int main(int argc, char *=*argv) {
Fl_Window xwindow = new Fl_Window (340,180);
Fl_Box *box = new F1l_Box(20,40,300,100,"Hello, World!");
box->box (FL_UP_BOX) ;
box->labelfont (FL_BOLD+FL_ITALIC) ;
box->labelsize (36);
box—->labeltype (FL_SHADOW_LABEL) ;
window->end () ;
window->show (argc, argv);
return Fl::run();

After including the required header files, the program then creates a window. All following widgets will
automatically be children of this window.

Fl_Window *window = new F1_Window (340,180);

Then we create a box with the "Hello, World!" string in it. FLTK automatically adds the new box to
window, the current grouping widget.

Fl_Box #*box = new F1l_BRox(20,40,300,100,"Hello, World!"™);

Next, we set the type of box and the font, size, and style of the label:

14 FLTK Basics

box->box (FL_UP_BOX) ;
box->labelfont (FL_BOLD+FL_TITALIC);
box—->labelsize (36);

box->labeltype (FL_SHADOW_LABEL) ;

We tell FLTK that we will not add any more widgets to window.

window->end () ;

Finally, we show the window and enter the FLTK event loop:

window->show (argc, argv);
return Fl::run();

The resulting program will display the window in Figure 2-1. You can quit the program by closing the
window or pressing the ESCape key.

Figure 4.1: The Hello, World! Window

4.1.1 Creating the Widgets

The widgets are created using the C++ new operator. For most widgets the arguments to the constructor
are:

Fl_Widget (x, y, width, height, label)

The x and y parameters determine where the widget or window is placed on the screen. In FLTK the top
left corner of the window or screen is the origin (i.e. x = 0, y = 0) and the units are in pixels.

The width and height parameters determine the size of the widget or window in pixels. The maximum
widget size is typically governed by the underlying window system or hardware.

label is a pointer to a character string to label the widget with or NULL. If not specified the label defaults
to NULL. The label string must be in static storage such as a string constant because FLTK does not make
a copy of it - it just uses the pointer.

4.1.2 Creating Widget hierarchies

Widgets are commonly ordered into functional groups, which in turn may be grouped again, creating a
hierarchy of widgets. FLTK makes it easy to fill groups by automatically adding all widgets that are
created between a myGroup—>begin () and myGroup—>end (). In this example, myGroup would
be the current group.

Newly created groups and their derived widgets implicitly call begin () in the constructor, effectively
adding all subsequently created widgets to itself until end () is called.

Setting the current group to NULL will stop automatic hierarchies. New widgets can now be added manually
using F1_Group::add(...) and F1_Group::insert (...).

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

4.1 Writing Your First FLTK Program 15

4.1.3 Get/Set Methods

box->box (FL_UP_BOX) sets the type of box the Fl_Box draws, changing it from the default of FL_—
NO_BOX, which means that no box is drawn. In our "Hello, World!" example we use FL_UP_BOX, which
means that a raised button border will be drawn around the widget. More details are available in the Box
Types section.

You could examine the boxtype in by doing box->box (). FLTK uses method name overloading to
make short names for get/set methods. A "set" method is always of the form "void name(type)", and a
"get" method is always of the form "type name() const".

41.4 Redrawing After Changing Attributes

Almost all of the set/get pairs are very fast, short inline functions and thus very efficient. However, the "set"”
methods do not call redraw () - you have to call it yourself. This greatly reduces code size and execution
time. The only common exceptions are value () which calls redraw () and label () which calls
redraw_label () if necessary.

41,5 Labels

All widgets support labels. In the case of window widgets, the label is used for the label in the title bar.
Our example program calls the 1abelfont (), labelsize (), and labeltype () methods.

The 1abelfont () method sets the typeface and style that is used for the label, which for this example
we are using FL_BOLD and FL_TITALIC. You can also specify typefaces directly.

The labelsize () method sets the height of the font in pixels.

The 1abeltype () method sets the type of label. FLTK supports normal, embossed, and shadowed labels
internally, and more types can be added as desired.

A complete list of all label options can be found in the section on Labels and Label Types.

4.1.6 Showing the Window

The show () method shows the widget or window. For windows you can also provide the command-line
arguments to allow users to customize the appearance, size, and position of your windows.

4.1.7 The Main Event Loop

All FLTK applications (and most GUI applications in general) are based on a simple event processing
model. User actions such as mouse movement, button clicks, and keyboard activity generate events that
are sent to an application. The application may then ignore the events or respond to the user, typically by
redrawing a button in the "down" position, adding the text to an input field, and so forth.

FLTK also supports idle, timer, and file pseudo-events that cause a function to be called when they occur.
Idle functions are called when no user input is present and no timers or files need to be handled - in short,
when the application is not doing anything. Idle callbacks are often used to update a 3D display or do other
background processing.

Timer functions are called after a specific amount of time has expired. They can be used to pop up a
progress dialog after a certain amount of time or do other things that need to happen at more-or-less regular
intervals. FLTK timers are not 100% accurate, so they should not be used to measure time intervals, for
example.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

16 FLTK Basics

File functions are called when data is ready to read or write, or when an error condition occurs on a file.
They are most often used to monitor network connections (sockets) for data-driven displays.

FLTK applications must periodically check (Fl::check()) or wait (Fl::wait()) for events or use the Fl::run()
method to enter a standard event processing loop. Calling Fl::run() is equivalent to the following code:

while (Fl::wait());

Fl::run() does not return until all of the windows under FLTK control are closed by the user or your
program.

4.2 Compiling Programs with Standard Compilers

Under UNIX (and under Microsoft Windows when using the GNU development tools) you will probably
need to tell the compiler where to find the header files. This is usually done using the —I option:

CC -I/usr/local/include ...
gcc -I/usr/local/include ...

The f1tk—-config script included with FLTK can be used to get the options that are required by your
compiler:

CC ‘fltk-config --cxxflags' ...

Similarly, when linking your application you will need to tell the compiler to use the FLTK library:

CC ... -L/usr/local/lib -1fltk -1Xext -1X11 -1lm
gcc ... -L/usr/local/lib -1fltk -1Xext -1X11 -1m

Aside from the "fitk" library, there is also a "fltk_forms" library for the XForms compatibility classes, "f-
Itk_gl" for the OpenGL and GLUT classes, and "fltk_images" for the image file classes, FI_Help_Dialog
widget, and system icon support.

Note

The libraries are named "fitk.1ib", "fitkgl.lib", "fitkforms.lib", and "fltkimages.lib", respectively under
Windows.

As before, the f1tk—config script included with FLTK can be used to get the options that are required
by your linker:

CC ... ‘fltk-config --1ldflags’

The forms, GL, and images libraries are included with the "--use-foo" options, as follows:

CC ... ‘fltk-config —--use-forms --ldflags’

CC ... ‘“fltk-config --use-gl --1ldflags’

CC ... “fltk-config --use-images --ldflags’

CC ... ‘“fltk-config --use-forms --use-gl --use-images --1ldflags’

Finally, you can use the f1tk—config script to compile a single source file as a FLTK program:

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

4.3 Compiling Programs with Makefiles 17

fltk-config —--compile filename.cpp

fltk-config —--use-forms --compile filename.cpp

fltk-config --use-gl —--compile filename.cpp

fltk-config --use-images —--compile filename.cpp

fltk-config --use-forms --use-gl --use-images —--compile filename.cpp

Any of these will create an executable named £ilename.

4.3 Compiling Programs with Makefiles

The previous section described how to use £1tk—-config to build a program consisting of a single source
file from the command line, and this is very convenient for small test programs. But f1tk—-config can
also be used to set the compiler and linker options as variables within a Makefile that can be used to
build programs out of multiple source files:

CXX = $(shell fltk-config —-cxx)

DEBUG = -g

CXXFLAGS = $(shell fltk-config --use-gl --use-images —--cxxflags) -1I.
LDFLAGS = $(shell fltk-config --use-gl --use-images —--1ldflags)
LDSTATIC = $(shell fltk-config --use-gl --use-images —--ldstaticflags)
LINK = $(CXX)

TARGET = cube
OBJS = CubeMain.o CubeView.o CubeViewUI.o
SRCS CubeMain.cxx CubeView.cxx CubeViewUI.cxx

.SUFFIXES: .0 .cxx

o

%.0: %.CxXX
$ (CXX) $(CXXFLAGS) $(DEBUG) -c $<

all: $(TARGET)
$(LINK) -o $(TARGET) $(OBJS) $(LDSTATIC)

S (TARGET) : $ (OBJS)

CubeMain.o: CubeMain.cxx CubeViewUI.h
CubeView.o: CubeView.cxx CubeView.h CubeViewUI.h
CubeViewUI.o: CubeViewUI.cxx CubeView.h

clean: $(TARGET) $(OBJS)
rm -f .0 2> /dev/null
rm —-f $(TARGET) 2> /dev/null

4.4 Compiling Programs with Microsoft Visual C++

In Visual C++ you will need to tell the compiler where to find the FLTK header files. This can be done
by selecting "Settings" from the "Project” menu and then changing the "Preprocessor” settings under the
"C/C++" tab. You will also need to add the FLTK (FLTK.LIB or FLTKD.LIB) and the Windows Com-
mon Controls (COMCTL32 . LIB) libraries to the "Link" settings. You must also define WIN32.

More information can be found in README . MSWindows . txt.

You can build your Microsoft Windows applications as Console or Desktop applications. If you want to
use the standard C main () function as the entry point, FLTK includes a WinMain () function that will
call your main () function for you.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

18 FLTK Basics

4.5 Naming

All public symbols in FLTK start with the characters *F” and "L’:
¢ Functions are either F1: : foo () or £1_foo ().
¢ Class and type names are capitalized: F1_Foo.

» Constants and enumerations are uppercase: FL_FOO.

All header files start with <FL/...>.

4.6 Header Files

The proper way to include FLTK header files is:
#include <FL/Fl_xyz.H>

Note

Case is significant on many operating systems, and the C standard uses the forward slash (/) to separate
directories. Do not use any of the following include lines:

#include <FL\F1l_xyz.H>
#include <fl1/fl_xyz.h>
#include <F1/fl_xyz.h>

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

Chapter 5

Common Widgets and Attributes

This chapter describes many of the widgets that are provided with FLTK and covers how to query and set
the standard attributes.

5.1 Buttons

FLTK provides many types of buttons:

* FI_Button - A standard push button.

F1_Check_Button - A button with a check box.
» FI_Light_Button - A push button with a light.
* FI_Repeat_Button - A push button that repeats when held.

e FI_Return_Button - A push button that is activated by the Enter key.

F1_Round_Button - A button with a radio circle.

Fl_Button FI_Return_Button <

FI_FEepeat Button < Fl_Round Button

" Fl Light Button| T Fl_Check_Button

Figure 5.1: FLTK Button Widgets

All of these buttons just need the corresponding <FL/F1_xyz_Button.H> header file. The constructor
takes the bounding box of the button and optionally a label string:

20 Common Widgets and Attributes

Fl_Button xbutton = new Fl_Button(x, y, width, height, "label");
F1l_Light_Button xlbutton = new F1l_Light_Button(x, y, width, height);
F1_Round_Button *rbutton = new F1_Round_Button(x, y, width, height, "label");

Each button has an associated t ype () which allows it to behave as a push button, toggle button, or radio
button:

button->type (FL_NORMAL_BUTTON) ;
lbutton->type (FL_TOGGLE_BUTTON) ;
rbutton->type (FL_RADIO_BUTTON) ;

For toggle and radio buttons, the value () method returns the current button state (0 = off, 1 = on). The
set () and clear () methods can be used on toggle buttons to turn a toggle button on or off, respectively.
Radio buttons can be turned on with the setonly () method; this will also turn off other radio buttons in
the same group.

5.2 Text

FLTK provides several text widgets for displaying and receiving text:

Fl_Input - A one-line text input field.

e FI_Output - A one-line text output field.

F1_Multiline_Input - A multi-line text input field.

FI_Multiline_Output - A multi-line text output field.

F1_Text_Display - A multi-line text display widget.

FI_Text_Editor - A multi-line text editing widget.

* FI_Help_View - A HTML text display widget.

The F1_Output and FI_Multiline_Output widgets allow the user to copy text from the output field but not
change it.

The value () method is used to get or set the string that is displayed:

Fl_Input *input = new F1l_Input(x, y, width, height, "label");
input->value ("Now is the time for all good men...");

The string is copied to the widget’s own storage when you set the value () of the widget.

The Fl_Text_Display and Fl_Text_Editor widgets use an associated Fl_Text_Buffer class for the value,
instead of a simple string.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

5.3 Valuators

21

5.3 Valuators

Unlike text widgets, valuators keep track of numbers instead of strings. FLTK provides the following

valuators:

* FI_Counter - A widget with arrow buttons that shows the current value.

F1_Dial - A round knob.
FI_Roller - An SGI-like dolly widget.
Fl_Scrollbar - A standard scrollbar widget.

F1_Slider - A scrollbar with a knob.

¢ Fl Value_Slider - A slider that shows the current value.

Fl Value Input

L]

FI_Slider

0 FL_VERT_MICE_SLIDER

FL_HORIZOMTAL

FL_HOR_FILL_SLIDER
FL_HOR_NICE_SLIDER

FL_VERT_FILL_SLIDER

FI_Value_Slider

o FL_VERT_MICE_SLIDER
0.00 0.00

000

0.00
FL_HOFR_SLIDER

0.00

FL_HOFR_FILL_SLIDER

ooo |
FL_HOFR_MICE_SLIDER

FL_VERT_FLL_SLIDER

Fl Value Outout

0 0|D.D

FI_ScroIIbari FI_Adjuster

&
4 » =55 %
FL_HORIZONTAL wi1=hi) i

=2
Z

]

Fl_Counter

oo |

A o

FL_SIMPLE_COUNMTER

FI_Dial

0O0®

FL_LIME_Di&L FL_FALL_DIAL

Fl_Roller

Some widgets have
color{FL_GREEM}
pnd color2{FL_RED)
to show the areas

FL_HORIZOMTAL these effect.

Figure 5.2: FLTK valuator widgets

The value () method gets and sets the current value of the widget. The minimum () and maximum ()
methods set the range of values that are reported by the widget.

5.4 Groups

The F1_Group widget class is used as a general purpose "container" widget. Besides grouping radio buttons,
the groups are used to encapsulate windows, tabs, and scrolled windows. The following group classes are

available with FLTK:

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

22 Common Widgets and Attributes

¢ Fl_Double_Window - A double-buffered window on the screen.

* FI_GI_Window - An OpenGL window on the screen.

* FI_Group - The base container class; can be used to group any widgets together.
* FI_Pack - A collection of widgets that are packed into the group area.

¢ F1_Scroll - A scrolled window area.

» Fl_Tabs - Displays child widgets as tabs.

¢ Fl Tile - A tiled window area.

¢ Fl_Window - A window on the screen.

* FI_Wizard - Displays one group of widgets at a time.

5.5 Setting the Size and Position of Widgets

The size and position of widgets is usually set when you create them. You can access them with the x (),
v (), w(),and h () methods.

You can change the size and position by using the position (), resize (), and size () methods:

button->position(x, Vy);
group->resize(x, y, width, height);
window->size (width, height);

If you change a widget’s size or position after it is displayed you will have to call redraw () on the
widget’s parent.

5.6 Colors

FLTK stores the colors of widgets as an 32-bit unsigned number that is either an index into a color palette
of 256 colors or a 24-bit RGB color. The color palette is not the X or MS Windows colormap, but instead
is an internal table with fixed contents.

See the Colors section of Drawing Things in FLTK for implementation details.

There are symbols for naming some of the more common colors:

e FL_BLACK
e FL_RED

¢ FFL_GREEN
e FL_YELLOW

e FI._BLUE

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

5.6 Colors

23

e FL_ MAGENTA

o FI,_CYAN

e FL, WHITE

e FLL WHITE

Other symbols are used as the default colors for all FLTK widgets.

e FL_FOREGROUND_COLOR

e FL_BACKGROUND_COLOR

e FL_INACTIVE_COLOR

e FL_SELECTION_COLOR

The full list of named color values can be found in FLTK Enumerations.

A color value can be created from its RGB components by using the £1_rgb_color() function, and

decomposed again with F1: :get_color ():

Fl _Color ¢ = fl_rgb_color (85, 170, 255);
Fl::get_color(c, r, g, b);

The widget color is set using the color () method:

button->color (FL_RED) ;

// RGB to Fl_Color
// Fl_Color to RGB

// set color using named value

Similarly, the label color is set using the labelcolor () method:

button->labelcolor (FL_WHITE) ;

The FI_Color encoding maps to a 32-bit unsigned integer representing RGBI, so it is also possible to
specify a color using a hex constant as a color map index:

button->color (0x000000£f) ;

// colormap index #255

or specify a color using a hex constant for the RGB components:

button->color (0xf£000000) ;
button->color (0x00££0000) ;
button->color (0x0000££00) ;
button->color (0xf£f£f£££00) ;

Note

If TrueColor is not available, any RGB colors will be set to the nearest entry in the colormap.

RGB:
RGB:
RGB:
RGB:

red
green
blue
white

(FL_WHITE)

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

24 Common Widgets and Attributes

5.7 Box Types
The type FlI_Boxtype stored and returned in FI_Widget::box() is an enumeration defined in Enumera-

tions.H.

Figure 3-3 shows the standard box types included with FLTK.

e T L
o [oo |

= e [
oo [N rovoun || e

FL_ROUMDED_BOH FL_RSHADOW _BOR -.. ..- FL_RFLAT_B DA
FL_OWAL_BOX FL_OSHADOW_BOR - FL_OFLAT_BOX
__,.-.'-'.ﬁ“"‘-..__

FL_ROUMND_UP_BOX || L ROUMD_DOWN_| BU I =T DlAMOMND_UP =AM OMND_D O
e

FL_FLASTIC_UP_EOX FL_PLASTIC_DOWN_BOX | I l:]

Figure 5.3: FLTK box types

F1L_NO_BOX means nothing is drawn at all, so whatever is already on the screen remains. The FL__ .. ._~—
FRAME types only draw their edges, leaving the interior unchanged. The blue color in Figure 3-3 is the
area that is not drawn by the frame types.

5.7.1 Making Your Own Boxtypes

You can define your own boxtypes by making a small function that draws the box and adding it to the table
of boxtypes.

Note:
This interface has changed in FLTK 2.0!

The Drawing Function

The drawing function is passed the bounding box and background color for the widget:

void xyz_draw(int x, int y, int w, int h, F1l_Color c) {

}

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

5.8 Labels and Label Types 25

A simple drawing function might fill a rectangle with the given color and then draw a black outline:

void xyz_draw(int x, int y, int w, int h, F1l_Color c) {
fl _color(c);
fl_rectf(x, y, w, h);
fl_color (FL_BLACK) ;
fl_rect(x, y, w, h);
}

FI_Boxtype fl_down(Fl_Boxtype b)

fl_down() returns the "pressed" or "down" version of a box. If no "down" version of a given box exists,
the behavior of this function is undefined and some random box or frame is returned. See Drawing
Functions for more details.

F1_Boxtype fl_frame(Fl_Boxtype b)

fl_frame() returns the unfilled, frame-only version of a box. If no frame version of a given box exists,
the behavior of this function is undefined and some random box or frame is returned. See Drawing
Functions for more details.

F1_Boxtype fl_box(Fl_Boxtype b)

fl_box() returns the filled version of a frame. If no filled version of a given frame exists, the behavior
of this function is undefined and some random box or frame is returned. See Drawing Functions for
more details.

Adding Your Box Type

The Fl::set_boxtype() method adds or replaces the specified box type:

#define XYZ_BOX FL_FREE_BOXTYPE

Fl::set_boxtype (XYZ_BOX, xyz_draw, 1, 1, 2, 2);

The last 4 arguments to Fl::set_boxtype() are the offsets for the %, v, width, and height values that
should be subtracted when drawing the label inside the box.

A complete box design contains four box types in this order: a filled, neutral box (UP_BOX), a filled,
depressed box (DOWN__BOX), and the same as outlines only (UP_FRAME and DOWN_FRAME). The function
fl_down(F1_Boxtype) expects the neutral design on a boxtype with a numerical value evenly dividable by
two. fl_frame(FI_Boxtype) expects the UP_BOX design at a value dividable by four.

5.8 Labels and Label Types

The 1abel (),align (), labelfont (), labelsize (), labeltype (), image (),and deimage ()
methods control the labeling of widgets.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

26 Common Widgets and Attributes

label()

The label () method sets the string that is displayed for the label. Symbols can be included with the
label string by escaping them using the "@" symbol - "@ @" displays a single at sign. Figure 3-4 shows
the available symbols.

= 2 b M L
-3 & = | &[]

[A 4 H I
B I < - i e |«
I 4l o — +
@« el &= & =+
= il — y D
- | || Earrow @returnarrow @sguare
O 5

Zcircle i2lire @meny S UpArrow @ Dndrrow

Figure 5.4: FLTK label symbols

The @ sign may also be followed by the following optional "formatting" characters, in this order:
* ’# forces square scaling, rather than distortion to the widget’s shape.
e +[1-9] or -[1-9] tweaks the scaling a little bigger or smaller.
* ’$’ flips the symbol horizontally, *%’ flips it vertically.
e [0-9] - rotates by a multiple of 45 degrees. ’5’ and 6’ do no rotation while the others point in the
direction of that key on a numeric keypad. ’0’, followed by four more digits rotates the symbol by

that amount in degrees.

Thus, to show a very large arrow pointing downward you would use the label string "@+92->".

align()

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

5.8 Labels and Label Types 27

The align () method positions the label. The following constants are defined and may be OR’d together
as needed:

* FL_ ALIGN_CENTER - center the label in the widget.

e FIL_ ALIGN_TOP - align the label at the top of the widget.

* FI_ ALIGN_BOTTOM - align the label at the bottom of the widget.

* FL_ ALIGN_LEFT - align the label to the left of the widget.

e FI_ ALIGN_RIGHT - align the label to the right of the widget.

e FI_ ALIGN_LEFT_TOP - The label appears to the left of the widget, aligned at the top. Outside
labels only.

* FLL ALIGN_RIGHT_TOP - The label appears to the right of the widget, aligned at the top. Outside
labels only.

e FI_ ALIGN_LEFT_BOTTOM - The label appears to the left of the widget, aligned at the bottom.
Outside labels only.

e FLL ALIGN_RIGHT_BOTTOM - The label appears to the right of the widget, aligned at the bottom.
Outside labels only.

* FL_ALIGN_INSIDE - align the label inside the widget.

e FL_ALIGN_CLIP - clip the label to the widget’s bounding box.

* FL_ALIGN_WRAP - wrap the label text as needed.

e FI_ ALIGN_TEXT_OVER_IMAGE - show the label text over the image.

e FL_ALIGN_IMAGE_OVER_TEXT - show the label image over the text (default).

e FI_ ALIGN_IMAGE_NEXT_TO_TEXT - The image will appear to the left of the text.
e FI_ALIGN_TEXT_NEXT_TO_IMAGE - The image will appear to the right of the text.

e FL_ALIGN_IMAGE_BACKDROP - The image will be used as a background for the widget.

labeltype()

The labeltype () method sets the type of the label. The following standard label types are included:

e FL_NORMAIL_LABEL - draws the text.

* FL_NO_LABEL - does nothing.

* FL_SHADOW_LABEL - draws a drop shadow under the text.

e F1L_ENGRAVED_LABEL - draws edges as though the text is engraved.
* FL_EMBOSSED_LABEL - draws edges as thought the text is raised.

e FI,_ ICON_LABEL - draws the icon associated with the text.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

28 Common Widgets and Attributes

image() and deimage()

The image () and deimage () methods set an image that will be displayed with the widget. The
deimage () method sets the image that is shown when the widget is inactive, while the image () method
sets the image that is shown when the widget is active.

To make an image you use a subclass of FI_Image.

Making Your Own Label Types

Label types are actually indexes into a table of functions that draw them. The primary purpose of this is to
use this to draw the labels in ways inaccessible through the fl_font() mechanism (e.g. FL_ENGRAVED_—
LABEL) or with program-generated letters or symbology.

Note:
This interface has changed in FLTK 2.0!

Label Type Functions

To setup your own label type you will need to write two functions: one to draw and one to measure the
label. The draw function is called with a pointer to a Fl_Label structure containing the label information,
the bounding box for the label, and the label alignment:

void xyz_draw (const F1_Label *label, int x, int y, int w, int h, F1_Align align)
{

The label should be drawn inside this bounding box, even if FL_ALIGN_INSIDE is not enabled. The
function is not called if the label value is NULL.

The measure function is called with a pointer to a F1_Label structure and references to the width and height:

void xyz_measure (const F1l_Label xlabel, int &w, int &h) {

}

The function should measure the size of the label and set w and h to the size it will occupy.

Adding Your Label Type

The Fl::set_labeltype() method creates a label type using your draw and measure functions:

#define XYZ_LABEL FL_FREE_LABELTYPE

Fl::set_labeltype (XYZ_LABEL, xyz_draw, Xyz_measure);

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

5.9 Callbacks 29

The label type number n can be any integer value starting at the constant FI,_FREE_LABELTYPE. Once
you have added the label type you can use the 1abeltype () method to select your label type.

The Fl::set_labeltype() method can also be used to overload an existing label type such as FI,_NORMAL_ -
LABEL.

Making your own symbols

It is also possible to define your own drawings and add them to the symbol list, so they can be rendered as
part of any label.

To create a new symbol, you implement a drawing function void drawit (F1_Color c) which typi-
cally uses the functions described in Drawing Complex Shapes to generate a vector shape inside a two-by-
two units sized box around the origin. This function is then linked into the symbols table using fl_add_sy-
mbol():

int fl_add_symbol (const char xname, void (xdrawit) (F1l_Color), int scalable)

name is the name of the symbol without the "@"; scalable must be set to 1 if the symbol is generated
using scalable vector drawing functions.

int fl_draw_symbol (const char *name,int x,int y,int w,int h,F1l_Color col)

This function draws a named symbol fitting the given rectangle.

5.9 Callbacks

Callbacks are functions that are called when the value of a widget changes. A callback function is sent a
F1_Widget pointer of the widget that changed and a pointer to data that you provide:

void xyz_callback (F1_Widget *w, void =xdata) {
}

The callback () method sets the callback function for a widget. You can optionally pass a pointer to
some data needed for the callback:

int xyz_data;

button->callback (xyz_callback, &xyz_data);

Normally callbacks are performed only when the value of the widget changes. You can change this using
the F1_Widget::when() method:

button->when (FL_WHEN_NEVER) ;
button->when (FL_WHEN_CHANGED) ;
button->when (FL_WHEN_RELEASE) ;
button->when (FL_WHEN_RELEASE_ALWAYS) ;
button->when (FL_WHEN_ENTER_KEY) ;
button->when (FL_WHEN_ENTER_KEY_ALWAYS) ;
(

button->when (FL_WHEN_CHANGED | FL_WHEN_NOT_CHANGED) ;

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

30 Common Widgets and Attributes

Note:

You cannot delete a widget inside a callback, as the widget may still be accessed by FLTK after your
callback is completed. Instead, use the Fl::delete_widget() method to mark your widget for deletion
when it is safe to do so.

Hint:

Many programmers new to FLTK or C++ try to use a non-static class method instead of a static class
method or function for their callback. Since callbacks are done outside a C++ class, the this pointer
is not initialized for class methods.

To work around this problem, define a static method in your class that accepts a pointer to the class,
and then have the static method call the class method(s) as needed. The data pointer you provide to the
callback () method of the widget can be a pointer to the instance of your class.

class Foo {
void my_callback (F1_Widget »*w);
static void my_static_callback (F1_Widget »*w, void xf) { ((Foo x)f)->my_callback
(w); '}

w—>callback (my_static_callback, (void x)this);

5.10 Shortcuts

Shortcuts are key sequences that activate widgets such as buttons or menu items. The shortcut ()
method sets the shortcut for a widget:

button->shortcut (FL_Enter);
button->shortcut (FL_SHIFT + 'b’);
button->shortcut (FL_CTRL + ’"b’);
button->shortcut (FL_ALT + "b’");
button->shortcut (FL_CTRL + FL_ALT + ’"b’);
button->shortcut (0); // no shortcut

The shortcut value is the key event value - the ASCII value or one of the special keys described in Fl::eve-
nt_key() Values combined with any modifiers like Shift ,Alt ,and Control.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

Chapter 6

Designing a Simple Text Editor

This chapter takes you through the design of a simple FLTK-based text editor.

6.1 Determining the Goals of the Text Editor

Since this will be the first big project you’ll be doing with FLTK, lets define what we want our text editor
to do:

1. Provide a menubar/menus for all functions.

2. Edit a single text file, possibly with multiple views.

3. Load from a file.

4. Save to a file.

5. Cut/copy/delete/paste functions.

6. Search and replace functions.

7. Keep track of when the file has been changed.

6.2 Designing the Main Window

Now that we’ve outlined the goals for our editor, we can begin with the design of our GUI. Obviously the
first thing that we need is a window, which we’ll place inside a class called EditorWindow:

class EditorWindow : public F1l_Double_Window {
public:
EditorWindow (int w, int h, const char* t);
~EditorWindow () ;

F1l_Window +*replace_dlg;
F1l_TInput +*replace_find;
F1l_TInput +*replace_with;
F1l_Button *replace_all;
F1_Return_Button +*replace_next;

F1_Button *replace_cancel;

32 Designing a Simple Text Editor

Fl_Text_Editor xeditor;
char search[256];
bi

6.3 Variables

Our text editor will need some global variables to keep track of things:

int changed = 0;
char filename[256] = "";
Fl_Text_Buffer xtextbuf;

The textbuf variable is the text editor buffer for our window class described previously. We’ll cover the
other variables as we build the application.

6.4 Menubars and Menus

The first goal requires us to use a menubar and menus that define each function the editor needs to perform.
The F1_Menu_Item structure is used to define the menus and items in a menubar:

F1l_Menu_Item menuitems[] = {

{ "gFile", 0, 0, 0, FL_SUBMENU },
{ "&New File", 0, (Fl_Callback x)new_cb },
{ "&Open File...", FL_COMMAND + ’'o’, (Fl_Callback =*)open_cb },
{ "&Insert File...", FL_COMMAND + ’i’, (Fl_Callback =*)insert_cb, 0, FL_MENU_
DIVIDER },
{ "&Save File", FL_COMMAND + ’'s’, (Fl_Callback =x)save_cb },
{ "Save File &As...", FL_COMMAND + FL_SHIFT + ’'s’, (Fl_Callback =)saveas_cb,

0, FL_MENU_DIVIDER },

{ "New &View", FL_ALT + ’'v’, (Fl_Callback x)view_cb, 0 },

{ "§¢Close View", FL_COMMAND + ’'w’, (Fl_Callback =)close_cb, 0, FL_MENU_DIVIDE
R },

{ "E&xit", FL_COMMAND + ’'qg’, (Fl_Callback =*)quit_cb, 0 },

{01},

{ "&Edit", O, 0, 0, FL_SUBMENU },

{ "&Undo", FL_COMMAND + ’'z’, (Fl_Callback =*)undo_cb, 0, FL_MENU_DIVIDER
}I
{ "Cus&t", FL_COMMAND + ’'x’, (Fl_Callback x)cut_cb },
{ "&Copy", FL_COMMAND + ’'c’, (Fl_Callback =)copy_cb },
{ "&Paste", FL_COMMAND + ’'v’, (Fl_Callback x)paste_cb },
{ "&Delete", 0, (Fl_Callback x)delete_cb },
{0},
{ "&Search", 0, 0, 0, FL_SUBMENU },
{ "&Find...", FL_COMMAND + "f’, (Fl_Callback x)find_cb },
{ "F&ind Again", FL_COMMAND + ’'g’, find2_cb },
{ "&Replace...", FL_COMMAND + ’'r’, replace_cb },
{ "Re&place Again", FL_COMMAND + ’'t’, replace2_cb 1},
{0},

{0}
Vi

Once we have the menus defined we can create the FI_Menu_Bar widget and assign the menus to it with:

Fl_Menu_Bar *m = new F1l_Menu_Bar (0, 0, 640, 30);
m->copy (menuitems) ;

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

6.5 Editing the Text 33

‘We’ll define the callback functions later.

6.5 Editing the Text

To keep things simple our text editor will use the FI_Text_Editor widget to edit the text:

w—>editor = new F1_Text_Editor (0, 30, 640, 370);
w—>editor->buffer (textbuf);

So that we can keep track of changes to the file, we also want to add a "modify" callback:

textbuf->add_modify_callback (changed_cb, w);
textbuf->call_modify_callbacks () ;

Finally, we want to use a mono-spaced font like FL_COURIER:

w—>editor->textfont (FL_COURIER) ;

6.6 The Replace Dialog

We can use the FLTK convenience functions for many of the editor’s dialogs, however the replace dialog
needs its own custom window. To keep things simple we will have a "find" string, a "replace" string, and
"replace all", "replace next", and "cancel" buttons. The strings are just F1_Input widgets, the "replace all"
and "cancel" buttons are FI_Button widgets, and the "replace next " button is a FI_Return_Button widget:

Find: |]

Feplace:

Feplace All ‘ Feplace Mext- | Cancel |

Figure 6.1: The search and replace dialog

F1_Window #*replace_dlg = new F1_Window (300, 105, "Replace");

F1l_Input *replace_find = new F1_Input (70, 10, 200, 25, "Find:");

F1l_Input *replace_with new F1_Input (70, 40, 200, 25, "Replace:");
Fl_Button *replace_all = new F1l_Button(10, 70, 90, 25, "Replace All");
F1l_Button *replace_next = new F1l_Button (105, 70, 120, 25, "Replace Next");
Fl_Button xreplace_cancel = new Fl_Button (230, 70, 60, 25, "Cancel");

6.7 Callbacks

Now that we’ve defined the GUI components of our editor, we need to define our callback functions.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

34 Designing a Simple Text Editor

6.7.1 changed_ch()
This function will be called whenever the user changes any text in the editor widget:

void changed_cb(int, int nInserted, int nDeleted, int, const char*, void* v) {
if ((nInserted || nDeleted) && !loading) changed = 1;
EditorWindow *w = (EditorWindow =)v;
set_title(w);
if (loading) w->editor->show_insert_position();

The set_title () function is one that we will write to set the changed status on the current file. We’re
doing it this way because we want to show the changed status in the window’s title bar.

6.7.2 copy_cb()

This callback function will call FI_Text_Editor::kf_copy() to copy the currently selected text to the clip-
board:

void copy_cb (F1_Widget*, void* v) {
EditorWindowx e = (EditorWindow=)v;
F1l_Text_Editor::kf_copy (0, e->editor);
}

6.7.3 cut_ch()
This callback function will call F1_Text_Editor::kf_cut() to cut the currently selected text to the clipboard:

void cut_cb (F1_Widget*, void* v) {
EditorWindow* e = (EditorWindowx)v;
Fl_Text_Editor::kf_cut (0, e->editor);
}

6.7.4 delete_cb()

This callback function will call FI_Text_Buffer::remove_selection() to delete the currently selected text to
the clipboard:

void delete_cb (F1_Widgets, voidx v) {
textbuf->remove_selection();

}

6.7.5 find_ch()

This callback function asks for a search string using the fl_input() convenience function and then calls the
find2_cb () function to find the string:

void find_cb (F1_Widget* w, voidx v) {
EditorWindowx e = (EditorWindow=)v;
const char =xval;

val = fl_input ("Search String:", e->search);
if (val != NULL) {
// User entered a string - go find it!

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

6.7 Callbacks 35

strcpy (e->search, val);
find2_cb(w, v);

6.7.6 find2_ch()

This function will find the next occurrence of the search string. If the search string is blank then we want
to pop up the search dialog:

void find2_cb (F1l_Widget* w, voidx v) {
EditorWindow* e = (EditorWindowx)v;
if (e->search[0] == "\0’) {
// Search string is blank; get a new one...
find_cb(w, Vv);

return;
}
int pos = e->editor->insert_position();
int found = textbuf->search_ forward(pos, e->search, &pos);
if (found) {

// Found a match; select and update the position...
textbuf->select (pos, poststrlen(e->search));
e->editor->insert_position (pos+strlen(e->search));
e->editor->show_insert_position();

}

else fl_alert ("No occurrences of \’%s\’ found!", e->search);

If the search string cannot be found we use the fl_alert() convenience function to display a message to that
effect.

6.7.7 new_ch()

This callback function will clear the editor widget and current filename. It also calls the check_save ()
function to give the user the opportunity to save the current file first as needed:

void new_cb (F1_Widget*, wvoidx*) {
if (!check_save()) return;

filename[0] = "\0';

textbuf->select (0, textbuf->length());
textbuf->remove_selection () ;

changed = 0;
textbuf->call_modify_callbacks();

6.7.8 open_ch()

This callback function will ask the user for a filename and then load the specified file into the input widget
and current filename. It also calls the check_save () function to give the user the opportunity to save
the current file first as needed:

void open_cb (F1_Widget*, voidx*) {

if (!check_save()) return;
char xnewfile = fl_file_chooser ("Open File?", "x", filename);
if (newfile != NULL) load_file(newfile, -1);

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

36 Designing a Simple Text Editor

We call the 1oad_file () function to actually load the file.

6.7.9 paste_ch()
This callback function will call F1_Text_Editor::kf_paste() to paste the clipboard at the current position:

void paste_cb (F1_Widget*, void* v) {
EditorWindowx e = (EditorWindow=)v;
F1l_Text_Editor::kf_paste (0, e->editor);
}

6.7.10 quit_ch()

The quit callback will first see if the current file has been modified, and if so give the user a chance to save
it. It then exits from the program:

void quit_cb (F1_Widget*, voidx*) {
if (changed && !check_save())
return;

exit (0);

6.7.11 replace_ch()
The replace callback just shows the replace dialog:

void replace_cb (Fl_Widgetx, voidx v) {
EditorWindow* e = (EditorWindowx)v;
e->replace_dlg->show () ;

6.7.12 replace2 _ch()

This callback will replace the next occurrence of the replacement string. If nothing has been entered for
the replacement string, then the replace dialog is displayed instead:

void replace2_cb (F1_Widgetx, voidx v) {

EditorWindowx e = (EditorWindow=)v;

const char xfind = e->replace_find->value();
const char xreplace = e->replace_with->value();
if (£ind[0] == "\0") {

// Search string is blank; get a new one...
e->replace_dlg—>show();
return;

}
e->replace_dlg—>hide();

int pos = e->editor->insert_position();
int found = textbuf->search_forward(pos, find, é&pos);

if (found) {
// Found a match; update the position and replace text...
textbuf->select (pos, poststrlen(find));

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

6.7 Callbacks

textbuf->remove_selection();
textbuf->insert (pos, replace);
textbuf->select (pos, poststrlen(replace));
e->editor->insert_position (pos+strlen(replace));
e->editor->show_insert_position();

}

else fl_alert ("No occurrences of \’%s\’ found!", find);

6.7.13 replall_ch()

This callback will replace all occurrences of the search string in the file:

void replall_cb(Fl_Widgetx, voidx v) {
EditorWindow* e = (EditorWindowx)v;
const char xfind = e->replace_find->value();
const char xreplace = e->replace_with->value/();

find = e->replace_find->value();

if (find[0] == ’"\0') {
// Search string is blank; get a new one...
e->replace_dlg->show () ;
return;

e->replace_dlg->hide () ;

e->editor->insert_position (0);
int times = 0;

// Loop through the whole string
for (int found = 1; found;) {
int pos = e->editor->insert_position();
found = textbuf->search_forward(pos, find, &pos);

if (found) {
// Found a match; update the position and replace text...
textbuf->select (pos, poststrlen(find));
textbuf->remove_selection () ;
textbuf->insert (pos, replace);
e->editor->insert_position (pos+strlen(replace));
e->editor->show_insert_position();

times++;
}
}
if (times) fl_message ("Replaced %d occurrences.", times);
else fl_alert ("No occurrences of \’%s\’ found!", find);

6.7.14 replcan_ch()

This callback just hides the replace dialog:

void replcan_cb (Fl_Widgetx, voidx v) {
EditorWindowx e = (EditorWindow=)v;
e->replace_dlg->hide();

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

38 Designing a Simple Text Editor

6.7.15 save_ch()

This callback saves the current file. If the current filename is blank it calls the "save as" callback:

void save_cb (void) {
if (filename[0] == ’"\0") {
// No filename - get one!
saveas_cb () ;
return;

}
else save_file(filename);

}

The save_file () function saves the current file to the specified filename.

6.7.16 saveas_ch()

This callback asks the user for a filename and saves the current £ile:

void saveas_cb (void) {
char xnewfile;

newfile = fl_file_chooser ("Save File As?", "«", filename);
if (newfile != NULL) save_file(newfile);

The save_file () function saves the current file to the specified filename.

6.8 Other Functions

Now that we’ve defined the callback functions, we need our support functions to make it all work:

6.8.1 check_save()

This function checks to see if the current file needs to be saved. If so, it asks the user if they want to save
it:

int check_save (void) {

if (!changed) return 1;
int r = fl_choice ("The current file has not been saved.\n"
"Would you like to save it now?",
"Cancel", "Save", "Discard");
if (r == 1) {
save_cb(); // Save the file...

return !changed;

}

return (r == 2) 2 1 : 0;

6.8.2 load_file()

This function loads the specified file into the textbuf variable:

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

6.9 The main() Function 39

int loading = 0;
void load_file(char xnewfile, int ipos) {
loading = 1;

int insert = (ipos != -1);
changed = insert;
if (!insert) strcpy(filename, "");
int r;
if (!insert) r = textbuf->loadfile(newfile);
else r = textbuf->insertfile (newfile, ipos);
if (r)
fl_alert ("Error reading from file \’%s\’:\n%s.", newfile, strerror (errno));
else
if (!insert) strcpy(filename, newfile);

loading = 0;
textbuf->call_modify_callbacks();

When loading the file we use the F1_Text_Buffer::loadfile() method to "replace" the text in the buffer, or
the FI_Text_Buffer::insertfile() method to insert text in the buffer from the named file.

6.8.3 save file()

This function saves the current buffer to the specified £ile:

void save_file(char *newfile) {
if (textbuf->savefile (newfile))
fl_alert ("Error writing to file \’%s\’:\n%s.", newfile, strerror (errno));
else
strcpy (filename, newfile);
changed = 0;
textbuf->call_modify_callbacks();

6.8.4 set title()
This function checks the changed variable and updates the window label accordingly:

void set_title(Fl_Windowx w) {
if (filename[0] == "\0’) strcpy(title, "Untitled");
else {
char xslash;
slash = strrchr (filename, ’/’");
#ifdef WIN32

if (slash == NULL) slash = strrchr(filename, "\\’);
#endif
if (slash != NULL) strcpy(title, slash + 1);

else strcpy(title, filename);

}
if (changed) strcat(title, " (modified)");

w—>label (title);

6.9 The main() Function

Once we’ve created all of the support functions, the only thing left is to tie them all together with the
main () function. The main () function creates a new text buffer, creates a new view (window) for the
text, shows the window, loads the file on the command-line (if any), and then enters the FLTK event loop:

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

40 Designing a Simple Text Editor

int main(int argc, char *xargv) {
textbuf = new F1l_Text_Buffer;

Fl_Window* window = new_view();
window->show (1, argv);
if (argc > 1) load_file(argv[1l], -1);

return Fl::run();

6.10 Compiling the Editor

The complete source for our text editor can be found in the test/editor.cxx source file. Both the
Makefile and Visual C++ workspace include the necessary rules to build the editor. You can also compile
it using a standard compiler with:

CC -o editor editor.cxx —-1fltk -1Xext -1X11 -1m

or by using the f1tk-config script with:

fltk-config --compile editor.cxx

As noted in Compiling Programs with Standard Compilers, you may need to include compiler and linker
options to tell them where to find the FLTK library. Also, the CC command may also be called gcc or
c++ on your system.

Congratulations, you’ve just built your own text editor!

6.11 The Final Product

The final editor window should look like the image in Figure 4-2.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

6.12 Advanced Features 41

File Edit Search |

S8 Id: editor.exx,v 1.2.2.3.2.5 2001712709 12:52:13 fﬂ
S A simple text editor program for the Fast Light Too
£4 This program is described in Chapter 4 of the FLTE

£ Copyright 1998-2001 by Bill Spitzak and cothers.

£/ This library is free software; vou can redistribute
S modify it under the terms of the GNU Library Genera
Ff License as published by the Free Scoftware Foundatio
Ff wersion 2 of the License, or (at your option) any 1

£ This library is distributed in the hope that it wil
£ but WITHOUT ANY WAREANTY; without even the implied
£ MERCHANTABILITY or FITHNESS FOR & PARTICULAR PURPOSE
£/ Library General Public License for more details.

Ff ¥ou should have received a copy of the GNU Library
£/ License along with this library; if not, write to t
£f Foundaticn, Inc., 59 Temple Place, Buite 330, Bosto
A UBA.

i 7
4] | 3

Figure 6.2: The completed editor window

6.12 Advanced Features

Now that we’ve implemented the basic functionality, it is time to show off some of the advanced features
of the FI_Text_Editor widget.

6.12.1 Syntax Highlighting

The F1_Text_Editor widget supports highlighting of text with different fonts, colors, and sizes. The imple-
mentation is based on the excellent NEdit text editor core, from http://www.nedit.org/, which
uses a parallel "style" buffer which tracks the font, color, and size of the text that is drawn.

Styles are defined using the FI_Text_Display::Style_Table_Entry structure defined in <FL/F1_Text_-
Display.H>:

struct Style_Table_Entry {
Fl_Color color;
Fl_Font font;
int size;
unsigned attr;
bi

The color member sets the color for the text, the font member sets the FLTK font index to use, and the
size member sets the pixel size of the text. The att r member is currently not used.
For our text editor we’ll define 7 styles for plain code, comments, keywords, and preprocessor directives:

Fl_Text_Display::Style_Table_Entry styletable[] = { // Style table
{ FL_BLACK, FL_COURIER, FL_NORMAL_SIZE }, // A - Plain

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

http://www.nedit.org/
http://www.nedit.org/,

42 Designing a Simple Text Editor

{ FL_DARK_GREEN, FIL_COURIER_ITALIC, FL_NORMAL_SIZE }, // B - Line comments
{ FL_DARK_GREEN, FL_COURIER_ITALIC, FL_NORMAL_SIZE }, // C - Block comments
{ FL_BLUE, FL_COURIER, FL_NORMAL_SIZE }, // D - Strings

{ FL_DARK_RED, FL_COURIER, FL_NORMAL_SIZE }, // E - Directives

{ FL_DARK_RED, FL_COURIER_BOLD, FL_NORMAL_SIZE }, // F - Types

{ FL_BLUE, FL_COURIER_BOLD, FL_NORMAL_SIZE } // G - Keywords

Vi

You’ll notice that the comments show a letter next to each style - each style in the style buffer is referenced
using a character starting with the letter "A’.

You call the highlight_data () method to associate the style data and buffer with the text editor
widget:

F1l_Text_Buffer xstylebuf;

w->editor->highlight_data (stylebuf, styletable,
sizeof (styletable) / sizeof (styletable[0]),
"A’, style_unfinished_cb, 0);

Finally, you need to add a callback to the main text buffer so that changes to the text buffer are mirrored in
the style buffer:

textbuf->add_modify_callback (style_update, w->editor);

The style_update () function, like the change_cb () function described earlier, is called whenever
text is added or removed from the text buffer. It mirrors the changes in the style buffer and then updates
the style data as necessary:

//
// "style_update()’ - Update the style buffer...
//
void
style_update (int pos, // I - Position of update
int nInserted, // I - Number of inserted chars
int nDeleted, // I — Number of deleted chars
int nRestyled, // I - Number of restyled chars
const char xdeletedText, // I - Text that was deleted
void *CbArg) { // I — Callback data
int start, // Start of text
end; // End of text
char last, // Last style on line
xstyle, // Style data
*text; // Text data

// If this is just a selection change, Jjust unselect the style buffer...

if (nInserted == 0 && nDeleted == 0) {
stylebuf->unselect ();
return;

// Track changes in the text buffer...

if (nInserted > 0) {
// Insert characters into the style buffer...
style = new char[nInserted + 1];
memset (style, "A’, nlInserted);
style[nInserted] = "\0’;

stylebuf->replace (pos, pos + nDeleted, style);
delete[] style;

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

6.12 Advanced Features

43

} else {

// Just delete characters in the style buffer...
stylebuf->remove (pos, pos + nDeleted);

// Select the area that was just updated to avoid unnecessary

// callbacks...
stylebuf->select (pos, pos + nInserted

// Re-parse the changed region; we do

- nDeleted);

this by parsing from the

// beginning of the line of the changed region to the end of

// the line of the changed region...

Then we check the last

// style character and keep updating if we have a multi-line

// comment character...

start = textbuf->line_start (pos);

end = textbuf->line_end(pos + nInserted - nDeleted);
text = textbuf->text_range(start, end);

style = stylebuf->text_range(start, end);

last = style[end - start - 1];

style_parse (text, style, end - start);

stylebuf->replace (start, end, style);

((F1_Text_Editor «)cbArg)->redisplay_range (start,

if (last != stylel[end - start - 1]) {

// The last character on the line changed styles,

// remainder of the buffer...
free (text);
free(style);

end) ;

end = textbuf->length();
text = textbuf->text_range(start, end);
style = stylebuf->text_range(start, end);

style_parse (text, style,

stylebuf->replace(start, end, style)

((F1_Text_Editor *)cbArg)->redisplay_range (start,

free (text);
free(style);

end - start);

’

end) ;

so reparse the

The style_parse () function scans a copy of the text in the buffer and generates the necessary style
characters for display. It assumes that parsing begins at the start of a line:

- Parse text and produce style data.

//
// '"style_parse()’
//
void
style_parse (const char xtext,
char *style,
int length) {
char current;
int col;
int last;
char buf[255],
*pbufptr;
const char xtemp;
for (current = xstyle, col = 0, last =
if (current == 'A’) {

// Check for directives,

comments,

0; length > 0;

strings,

length --,

and keywords...

text ++4)

{

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

44

Designing a Simple Text Editor

"H#) A{

if (col == 0 && xtext ==
// Set style to directive
current = 'E’;

} else if (strncmp (text,
current = ’'B’;

} else if (strncmp (text,
current = 'C’;

} else if (strncmp (text,
// Quoted quote...

*style++ = current;
*style++ = current;
text ++;
length -—;
col += 2;
continue;

} else if (xtext == "\"7)
current = ’'D’;

} else if
for (temp = text,
islower (xtemp)
spbufptr++ =
if (!islower (xtemp)) {
sbufptr = "\0’;

bufptr = buf;

if (bsearch (&bufptr,

sizeof (code_types)

bufptr =
&& bufptr <
*temp++) ;

"M, 2) ==
"/x", 2) ==
A\, 2)

{

(!last && islower (*text))
// Might be a keyword..

buf;

code_types,

{

(buf + sizeof (buf) -

sizeof (code_types[0]),

while (text < temp)
*style++ = 'F’;
text ++;
length —-—;
col ++;

text ——;
length ++;
last = 1;
continue;
} else if

while (text < temp)
xstyle++ = 'G’;
text ++;
length —-—;
col ++;

text ——;
length ++;
last = 1;
continue;

}

} else if (current == ’'C’
// Close a C comment...
*style++ = current;
*style++ = current;
text ++;
length -—;
current =
col += 2;

A’ ;

(bsearch (&¢bufptr,

{

{

&& strncmp (text,

1);

/ sizeof (code_types[0]),

compare_keywords)) {

code_keywords,
sizeof (code_keywords)
sizeof (code_keywords[0]),

/ sizeof (code_keywords[0]),
compare_keywords)) {

"*/"’

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

45

6.12 Advanced Features
continue;

} else if (current == 'D’) {
// Continuing in string...
if (strncmp (text, "\\\"", 2) == 0) {

// Quoted end quote...
+style++ = current;
*style++ = current;
text ++;

length ——;

col += 2;

continue;

} else if (*text == "\"7) {
// End quote...
*style++ = current;
col ++;
current = "A’;
continue;

// Copy style info...

if (current == 'A’ && (xtext == '{’ || *text == "}"))
else xstyle++ = current;
col ++;
last = isalnum(xtext) || *text == '.';
if (xtext == "\n’) {
// Reset column and possibly reset the style
col = 0;
if (current == 'B’ || current == 'E’) current =

*style++

G’ ;

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

46

Designing a Simple Text Editor

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

Chapter 7

Drawing Things in FLTK

This chapter covers the drawing functions that are provided with FLTK.

7.1 When Can You Draw Things in FLTK?

There are only certain places you can execute drawing code in FLTK. Calling these functions at other
places will result in undefined behavior!

* The most common place is inside the virtual FI_Widget::draw() method. To write code here, you
must subclass one of the existing FI_Widget classes and implement your own version of draw().

* You can also create custom boxtypes and labeltypes. These involve writing small procedures that
can be called by existing FI_Widget::draw() methods. These "types" are identified by an 8-bit index
that is stored in the widget’s box (), Labeltype (), and possibly other properties.

* You can call FI_Window::make_current() to do incremental update of a widget. Use F1_Widget::w-
indow() to find the window.

7.2 Drawing Functions

To use the drawing functions you must first include the <FL/fl_draw.H> header file. FLTK provides the
following types of drawing functions:

* Boxes

* Clipping

* Colors

* Line Dashes and Thickness

* Drawing Fast Shapes

* Drawing Complex Shapes

e Drawing Text

48 Drawing Things in FLTK

* Fonts

* Character Encoding

* Drawing Overlays

¢ Drawing Images

* Direct Image Drawing
* Direct Image Reading
* Image Classes

» Offscreen Drawing

7.2.1 Boxes

FLTK provides three functions that can be used to draw boxes for buttons and other UI controls. Each
function uses the supplied upper-lefthand corner and width and height to determine where to draw the box.

void fl_draw_box(F1_Boxtype b, int x, int y, int w, int h, F1_Color ¢);

The £1_draw_box() function draws a standard boxtype b in the specified color c.

void fl_frame(const char xs, int x, int y, int w, int h)

void fl_frame2(const char *s, int X, int y, int w, int h)

The £1_frame() and £1_frame2() functions draw a series of line segments around the given box.
The string s must contain groups of 4 letters which specify one of 24 standard grayscale values, where
’A’ is black and X’ is white. The results of calling these functions with a string that is not a multiple
of 4 characters in length are undefined.

The only difference between £1_ frame() and £1_ frame2() is the order of the line segments:
e For £1_ frame() the order of each set of 4 characters is: top, left, bottom, right.

e For £1_frame2() the order of each set of 4 characters is: bottom, right, top, left.

Note that fl_frame(Fl_Boxtype b) is described in the Box Types section.

7.2.2 Clipping

You can limit all your drawing to a rectangular region by calling £1_push_clip(), and put the drawings
back by using £1_pop_clip(). This rectangle is measured in pixels and is unaffected by the current
transformation matrix.

In addition, the system may provide clipping when updating windows which may be more complex than a
simple rectangle.

void fl_push_clip(int x, int y, int w, int h)

void fl_clip(int x, int y, int w, int h)

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

7.3 Colors 49

Intersect the current clip region with a rectangle and push this new region onto the stack.

The £1_c1ip() version is deprecated and will be removed from future releases.

void fl_push_no_clip()

Pushes an empty clip region on the stack so nothing will be clipped.

void fl_pop_clip()

Restore the previous clip region.

Note: You must call £1_pop_clip() once for every time you call £1_push_clip(). If you return
to FLTK with the clip stack not empty unpredictable results occur.

int fl_not_clipped(int x, int y, int w, int h)

Returns non-zero if any of the rectangle intersects the current clip region. If this returns 0 you don’t
have to draw the object.

Note: Under X this returns 2 if the rectangle is partially clipped, and 1 if it is entirely inside the clip
region.

int fl_clip_box(int x, int y, int w, int h, int &X, int &Y, int &W, int &H)

Intersect the rectangle x, v, w, h with the current clip region and returns the bounding box of the
result in X, Y, W, H. Returns non-zero if the resulting rectangle is different than the original. This
can be used to limit the necessary drawing to a rectangle. W and H are set to zero if the rectangle is
completely outside the region.

void fl_clip_region(Fl_Region r)
FI_Region fl_clip_region()

Replace the top of the clip stack with a clipping region of any shape. F1_Region is an operating system
specific type. The second form returns the current clipping region.

7.3 Colors

FLTK manages colors as 32-bit unsigned integers, encoded as RGBI. When the RGB bytes are non-zero,
the value is treated as RGB. If these bytes are zero, the I byte will be used as an index into the colormap.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

50 Drawing Things in FLTK

Values from 0 to 255, i.e. the I index value, represent colors from the FLTK 1.3.x standard colormap
and are allocated as needed on screens without TrueColor support. The FI_Color enumeration type de-
fines the standard colors and color cube for the first 256 colors. All of these are named with symbols in
<FL/Enumerations.H>.

Color values greater than 255 are treated as 24-bit RGB values. These are mapped to the closest color
supported by the screen, either from one of the 256 colors in the FLTK 1.3.x colormap or a direct RGB
value on TrueColor screens.

FI_Color fl_rgb_color(uchar r, uchar g, uchar b)
FI_Color fl_rgb_color(uchar grayscale)

Generate F1_Color out of specified 8-bit RGB values or one 8-bit grayscale value.

void fl_color(Fl_Color c)

void fl_color(int ¢)

Sets the color for all subsequent drawing operations. Please use the first form: the second form is only
provided for back compatibility.

For colormapped displays, a color cell will be allocated out of £1_colormap the first time you use
a color. If the colormap fills up then a least-squares algorithm is used to find the closest color.

F1_Color fl_color()

Returns the last color that was set using £1_color(). This can be used for state save/restore.

void fl_color(uchar r, uchar g, uchar b)

Set the color for all subsequent drawing operations. The closest possible match to the RGB color is
used. The RGB color is used directly on TrueColor displays. For colormap visuals the nearest index
in the gray ramp or color cube is used.

unsigned Fl::get_color(Fl_Color 1)

void Fl::get_color(FI_Color i, uchar &red, uchar &green, uchar &blue)

Generate RGB values from a colormap index value i. The first returns the RGB as a 32-bit unsigned
integer, and the second decomposes the RGB into three 8-bit values.
Todo

work out why Fl::get_color() does not give links!

Fl::get_system_colors()
Fl::foreground()
Fl::background()
Fl::background2()

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

7.3 Colors 51

The first gets color values from the user preferences or the system, and the other routines are used to
apply those values.

Fl::own_colormap()
Fl::free_color(Fl_Color i, int overlay)

Fl::set_color(F1_Color i, unsigned c)

Fl::own_colormap () is used to install a local colormap [X11 only].

Fl::free_color() and Fl::set_color () are used to remove and replace entries from the
colormap.

Todo

work out why these do not give links!

There are two predefined graphical interfaces for choosing colors. The function fl_show_colormap() shows
a table of colors and returns an Fl_Color index value. The Fl_Color_Chooser widget provides a standard
RGB color chooser.

As the F1_Color encoding maps to a 32-bit unsigned integer representing RGBI, it is also possible to specify
a color using a hex constant as a color map index:

// COLOR MAP INDEX
color (0x000000I1I)

| Color map index (8 bits)
Must be zero

button->color (0x000000£ff) ; // colormap index #255 (FL_WHITE)

or specify a color using a hex constant for the RGB components:

// RGB COLOR ASSIGNMENTS
color (0XxRRGGBBO0O)
[
| | | Must be zero
| | Blue (8 bits)
| Green (8 bits)
Red (8 bits)

button->color (0x££000000) ; // RGB: red

button->color (0x00££0000) ; // RGB: green

button->color (0x0000££00) ; // RGB: blue
(

button->color (OxXxff£f£££00) ; // RGB: white

Note

If TrueColor is not available, any RGB colors will be set to the nearest entry in the colormap.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

52 Drawing Things in FLTK

7.3.1 Line Dashes and Thickness

FLTK supports drawing of lines with different styles and widths. Full functionality is not available under
Windows 95, 98, and Me due to the reduced drawing functionality these operating systems provide.

void fl_line_style(int style, int width, charx dashes)

Set how to draw lines (the "pen"). If you change this it is your responsibility to set it back to the default
with f1_line_style (0).

Note: Because of how line styles are implemented on MS Windows systems, you must set the line
style after setting the drawing color. If you set the color after the line style you will lose the line style
settings!

style is a bitmask which is a bitwise-OR of the following values. If you don’t specify a dash type
you will get a solid line. If you don’t specify a cap or join type you will get a system-defined default
of whatever value is fastest.

e FI_soL.p @ -———m————

e I, DASH - - - -

e FL,DOT ...,

e F'I, DASHDOT - . -

e FI_ DASHDOTDOT - .. -

e FIL_CAP_FILAT

e F'I,_ CAP_ROUND

* FL_CAP_SQUARE (extends past end point 1/2 line width)
e FL_JOIN_MITER (pointed)

e F'I,__ JOIN_ROUND

« FL_JOIN_BEVEL (flat)

width is the number of pixels thick to draw the lines. Zero results in the system-defined default,
which on both X and Windows is somewhat different and nicer than 1.

dashes is a pointer to an array of dash lengths, measured in pixels. The first location is how long to
draw a solid portion, the next is how long to draw the gap, then the solid, etc. It is terminated with a
zero-length entry. A NULL pointer or a zero-length array results in a solid line. Odd array sizes are not
supported and result in undefined behavior.

Note: The dashes array does not work under Windows 95, 98, or Me, since those operating systems
do not support complex line styles.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

7.3 Colors 53

7.3.2 Drawing Fast Shapes

These functions are used to draw almost all the FLTK widgets. They draw on exact pixel boundaries and
are as fast as possible. Their behavior is duplicated exactly on all platforms FLTK is ported. It is undefined
whether these are affected by the transformation matrix, so you should only call these while the matrix is
set to the identity matrix (the default).

void fl_point(int x, int y)

Draw a single pixel at the given coordinates.

void fl_rectf(int x, int y, int w, int h)

void fl_rectf(int X, int y, int w, int h)

Color a rectangle that exactly fills the given bounding box.

void fl_rectf(int x, int y, int w, int h, uchar r, uchar g, uchar b)

Color a rectangle with "exactly" the passed r, g, b color. On screens with less than 24 bits of color
this is done by drawing a solid-colored block using fl_draw_image() so that the correct color shade is
produced.

void fl_rect(int x, int y, int w, int h)

void fl_rect(int X, int y, int w, int h, F1_Color ¢)
Draw a 1-pixel border inside this bounding box.

void fl_line(int x, int y, int X1, int y1)

void fl_line(int X, int y, int x1, int y1, int X2, int y2)
Draw one or two lines between the given points.

void fl_loop(int x, int y, int x1, int y1, int X2, int y2)

void fl_loop(int x, int y, int X1, int y1, int X2, int y2, int X3, int y3)
Outline a 3 or 4-sided polygon with lines.

void fl_polygon(int x, int y, int x1, int y1, int X2, int y2)

void fl_polygon(int x, int y, int x1, int y1, int X2, int y2, int X3, int y3)

Fill a 3 or 4-sided polygon. The polygon must be convex.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

54

Drawing Things in FLTK

void fl_xyline(int x, int y, int x1)

void fl_xyline(int X, int y, int x1, int y2)

void fl_xyline(int x, int y, int X1, int y2, int Xx3)

Draw horizontal and vertical lines. A horizontal line is drawn first, then a vertical, then a horizontal.

void fl_yxline(int X, int y, int y1)

void fl_yxline(int X, int y, int y1, int x2)

void fl_yxline(int x, int y, int y1, int X2, int y3)

Draw vertical and horizontal lines. A vertical line is drawn first, then a horizontal, then a vertical.

void fl_arc(int x, int y, int w, int h, double al, double a2)

void fl_pie(int x, int y, int w, int h, double al, double a2)

Draw ellipse sections using integer coordinates. These functions match the rather limited circle draw-
ing code provided by X and MS Windows. The advantage over using fl_arc() with floating point
coordinates is that they are faster because they often use the hardware, and they draw much nicer small
circles, since the small sizes are often hard-coded bitmaps.

If a complete circle is drawn it will fit inside the passed bounding box. The two angles are measured
in degrees counter-clockwise from 3’oclock and are the starting and ending angle of the arc, a2 must
be greater or equal to al.

f£1_arc() draws a series of lines to approximate the arc. Notice that the integer version of £1_arc()
has a different number of arguments to the other fl_arc() function described later in this chapter.

f1_pie() draws a filled-in pie slice. This slice may extend outside the line drawn by £1_arc(); to
avoid this use w—1 and h—-1.

Todo

add an FI_Draw_Area_Cb typedef to allow fl_scroll(...) to be doxygenated?

void fl_scroll(int X, int Y, int W, int H, int dx, int dy, void («xdraw_area)(voidsx, int,int,int,int), void* data)

Scroll a rectangle and draw the newly exposed portions. The contents of the rectangular area is first
shifted by dx and dy pixels. The callback is then called for every newly exposed rectangular area,

7.3.3 Drawing Complex Shapes

The complex drawing functions let you draw arbitrary shapes with 2-D linear transformations. The func-
tionality matches that found in the Adobe®PostScript™language. The exact pixels that are filled are less

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

7.3 Colors 55

defined than for the fast drawing functions so that FLTK can take advantage of drawing hardware. On both
X and MS Windows the transformed vertices are rounded to integers before drawing the line segments:
this severely limits the accuracy of these functions for complex graphics, so use OpenGL when greater
accuracy and/or performance is required.

void fl_push_matrix()

void fl_pop_matrix()

Save and restore the current transformation. The maximum depth of the stack is 32 entries.

void fl_scale(double x,double y)

void fl_scale(double x)

void fl_translate(double x,double y)

void fl_rotate(double d)

void fl_mult_matrix(double a,double b,double c,double d,double x,double y)

Concatenate another transformation onto the current one. The rotation angle is in degrees (not radians)
and is counter-clockwise.

double fl_transform_x(double x, double y)
double f1_transform_y(double x, double y)
double fl_transform_dx(double x, double y)
double fl_transform_dy(double x, double y)

void fl_transformed_vertex(double xf, double yf)

Transform a coordinate or a distance using the current transformation matrix. After transforming a
coordinate pair, it can be added to the vertex list without any further translations using £1_transf-
ormed_vertex().

void fl_begin_points()

void fl_end_points()

Start and end drawing a list of points. Points are added to the list with £1_vertex().

void fl_begin_line()
void fl_end_line()

Start and end drawing lines.

void fl_begin_loop()
void fl_end_loop()

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

56 Drawing Things in FLTK

Start and end drawing a closed sequence of lines.

void fl_begin_polygon()
void fl_end_polygon()

Start and end drawing a convex filled polygon.
void fl_begin_complex_polygon()

void fl_gap()
void fl_end_complex_polygon()

Start and end drawing a complex filled polygon. This polygon may be concave, may have holes in it,
or may be several disconnected pieces. Call £1__gap() to separate loops of the path. It is unnecessary
but harmless to call £1_ gap() before the first vertex, after the last one, or several times in a row.

f£1_gap() should only be called between £1_begin_complex_polygon() and £1_end_com-
plex_polygon(). To outline the polygon, use £1_begin_loop() and replace each £1_gap()
with a £1_end_loop();fl_begin_loop() pair.

Note: For portability, you should only draw polygons that appear the same whether "even/odd" or
"non-zero" winding rules are used to fill them. Holes should be drawn in the opposite direction of the
outside loop.

void fl_vertex(double x,double y)

Add a single vertex to the current path.

void fl_curve(double X0, double YO, double X1, double Y1, double X2, double Y2, double X3, double
Y3)

Add a series of points on a Bezier curve to the path. The curve ends (and two of the points) are at
X0, Y0 and X3, Y3.

void fl_arc(double x, double y, double r, double start, double end)

Add a series of points to the current path on the arc of a circle; you can get elliptical paths by using
scale and rotate before calling £1_arc(). The center of the circle is given by x and y, and r is its
radius. £1_arc() takes start and end angles that are measured in degrees counter-clockwise from
3 o’clock. If end is less than start then it draws the arc in a clockwise direction.

void fl_circle(double x, double y, double r)

fl_circle(...) is equivalentto £1_arc(...,0,360) but may be faster. It must be the only thing in the
path: if you want a circle as part of a complex polygon you must use £1_arc().

Note: £1_circle()draws incorrectly if the transformation is both rotated and non-square scaled.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

7.3 Colors 57

7.3.4 Drawing Text

All text is drawn in the current font. It is undefined whether this location or the characters are modified by
the current transformation.

void fl_draw(const char x, int x, int y)

void fl_draw(const char x, int n, int x, int y)

Draw a nul-terminated string or an array of n characters starting at the given location. Text is aligned
to the left and to the baseline of the font. To align to the bottom, subtract £1_descent() from y.
To align to the top, subtract £1_descent() and add £1_height(). This version of £1_draw()
provides direct access to the text drawing function of the underlying OS. It does not apply any special
handling to control characters.

void fl_draw(const charx str, int X, int y, int w, int h, FI_Align align, F1_Image* img, int draw_symbols)

Fancy string drawing function which is used to draw all the labels. The string is formatted and aligned
inside the passed box. Handles *\t" and *\n’, expands all other control characters to X, and aligns
inside or against the edges of the box described by x, y, w and h. See F1_Widget::align() for values
for align. The value FI,_ALIGN_INSIDE is ignored, as this function always prints inside the box.

If img is provided and is not NULL, the image is drawn above or below the text as specified by the
align value.

The draw_symbols argument specifies whether or not to look for symbol names starting with the
"@" character.

The text length is limited to 1024 characters per line.

void fl_measure(const char x*str, int& w, int& h, int draw_symbols)

Measure how wide and tall the string will be when printed by the £1_draw(...align) function. If the
incoming w is non-zero it will wrap to that width.

int fl_height()

Recommended minimum line spacing for the current font. You can also just use the value of size
passed to fl_font().

int fl_descent()

Recommended distance above the bottom of a £1_height() tall box to draw the text at so it looks
centered vertically in that box.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

58 Drawing Things in FLTK

double fl_width(const char* txt)
double fl_width(const charx txt, int n)

double fl_width(unsigned int unicode_char)

Return the pixel width of a nul-terminated string, a sequence of n characters, or a single character in
the current font.

const charx fl_shortcut_label(int shortcut)

Unparse a shortcut value as used by Fl_Button or FI_Menu_Item into a human-readable string like
"Alt+N". This only works if the shortcut is a character key or a numbered function key. If the shortcut
is zero an empty string is returned. The return value points at a static buffer that is overwritten with
each call.

7.3.5 Fonts

FLTK supports a set of standard fonts based on the Times, Helvetica/Arial, Courier, and Symbol typefaces,
as well as custom fonts that your application may load. Each font is accessed by an index into a font table.

Initially only the first 16 faces are filled in. There are symbolic names for them: FL._HELVETICA, FL_T-
IMES, FL_COURIER, and modifier values FL._BOLD and FL_ITALIC which can be added to these, and
FL_SYMBOL and FL_ZAPF_DINGBATS. Faces greater than 255 cannot be used in FI_Widget labels,
since F1_Widget stores the index as a byte.

void fl_font(int face, int size)

Set the current font, which is then used by the routines described above. You may call this outside a
draw context if necessary to call fl_width(), but on X this will open the display.

The font is identified by a face and a size. The size of the font is measured in pixels and not
"points". Lines should be spaced size pixels apart or more.

int fl_font()

int fl_size()

Returns the face and size set by the most recent call to £1_font (a,b). This can be used to
save/restore the font.

7.3.6 Character Encoding
FLTK 1.3 expects all text in Unicode UTF-8 encoding. UTF-8 is ASCII compatible for the first 128
characters. International characters are encoded in multibyte sequences.

FLTK expects individual characters, characters that are not part of a string, in UCS-4 encoding, which is
also ASCII compatible, but requires 4 bytes to store a Unicode character.

For more information about character encodings, see the chapter on Unicode and UTF-8 Support.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

7.4 Drawing Images 59

7.3.7 Drawing Overlays

These functions allow you to draw interactive selection rectangles without using the overlay hardware.
FLTK will XOR a single rectangle outline over a window.

void fl_overlay_rect(int x, int y, int w, int h);

void fl_overlay_clear();

f1_overlay_rect() draws a selection rectangle, erasing any previous rectangle by XOR’ing it
first. £1_overlay_clear() will erase the rectangle without drawing a new one.

Using these functions is tricky. You should make a widget with both a handle () and draw ()
method. draw () should call £1_overlay_clear() before doing anything else. Your handle ()
method should call window () —>make_current () and then f1_overlay_rect() after FL_-
DRAG events, and should call f1_overlay_clear() after a FL_RELEASE event.

7.4 Drawing Images

To draw images, you can either do it directly from data in your memory, or you can create a Fl_Ima-
ge object. The advantage of drawing directly is that it is more intuitive, and it is faster if the image data
changes more often than it is redrawn. The advantage of using the object is that FLTK will cache translated
forms of the image (on X it uses a server pixmap) and thus redrawing is much faster.

7.4.1 Direct Image Drawing

The behavior when drawing images when the current transformation matrix is not the identity is not defined,
so you should only draw images when the matrix is set to the identity.

void fl_draw_image(const uchar xbuf,int X,int Y,int W,int H,int D,int L)

void fl_draw_image_mono(const uchar xbuf,int X,int Y,int W.int H,int D,int L)

Draw an 8-bit per color RGB or luminance image. The pointer points at the "r" data of the top-left
pixel. Color data must be in r, g, b order. The top left corner is given by X and Y and the size of
the image is given by W and H. D is the delta to add to the pointer between pixels, it may be any value
greater or equal to 3, or it can be negative to flip the image horizontally. L is the delta to add to the
pointer between lines (if 0 is passed it uses W+D). and may be larger than WxD to crop data, or negative
to flip the image vertically.

It is highly recommended that you put the following code before the first show() of any window in
your program to get rid of the dithering if possible:

Fl::visual (FL_RGB) ;

Gray scale (1-channel) images may be drawn. This is done if abs (D) is less than 3, or by calling £-
1_draw_image_mono(). Only one 8-bit sample is used for each pixel, and on screens with different
numbers of bits for red, green, and blue only gray colors are used. Setting D greater than 1 will let you
display one channel of a color image.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

60 Drawing Things in FLTK

Note: The X version does not support all possible visuals. If FLTK cannot draw the image in the
current visual it will abort. FLTK supports any visual of 8 bits or less, and all common TrueColor
visuals up to 32 bits.

typedef void (xF1_Draw_Image_Cb)(void *data,int x,int y,int w,uchar xbuf)
void fl_draw_image(Fl_Draw_Image_Cb cb,void *data,int X,int Y,int W.int H,int D)

void fl_draw_image_mono(Fl_Draw_Image_Cb cb,void *data,int X,int Y,int W,int H,int D)

Call the passed function to provide each scan line of the image. This lets you generate the image as
it is being drawn, or do arbitrary decompression of stored data, provided it can be decompressed to
individual scan lines easily.

The callback is called with the voids* user data pointer which can be used to point at a structure of
information about the image, and the x, y, and w of the scan line desired from the image. 0,0 is the
upper-left corner of the image, not X, Y. A pointer to a buffer to put the data into is passed. You must
copy w pixels from scanline vy, starting at pixel x, to this buffer.

Due to cropping, less than the whole image may be requested. So x may be greater than zero, the first
y may be greater than zero, and w may be less than W. The buffer is long enough to store the entire
W=D pixels, this is for convenience with some decompression schemes where you must decompress
the entire line at once: decompress it into the buffer, and then if x is not zero, copy the data over so the
x’ th pixel is at the start of the buffer.

You can assume the y’ s will be consecutive, except the first one may be greater than zero.

If D is 4 or more, you must fill in the unused bytes with zero.
int fl_draw_pixmap(char* constx data, int X, int y, F1_Color bg)

int fl_draw_pixmap(const charx constx cdata, int x, int y, FI_Color bg)

Draws XPM image data, with the top-left corner at the given position. The image is dithered on 8-
bit displays so you won’t lose color space for programs displaying both images and pixmaps. This
function returns zero if there was any error decoding the XPM data.

To use an XPM, do:

#include "foo.xpm"

fl _draw_pixmap (foo, X, Y);

Transparent colors are replaced by the optional F1_Color argument. To draw with true transparency
you must use the F1_Pixmap class.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

7.4 Drawing Images 61

int fl_measure_pixmap(charx constx data, int &w, int &h)

int fl_measure_pixmap(const char* constx cdata, int &w, int &h)

An XPM image contains the dimensions in its data. This function finds and returns the width and
height. The return value is non-zero if the dimensions were parsed ok and zero if there was any
problem.

7.4.2 Direct Image Reading
FLTK provides a single function for reading from the current window or off-screen buffer into a RGB(A)
image buffer.

ucharx fl_read_image(uchar xp, int X, int Y, int W, int H, int alpha)

Read a RGB(A) image from the current window or off-screen buffer. The p argument points to a buffer
that can hold the image and must be at least WxH=3 bytes when reading RGB images and WxHx4 bytes
when reading RGBA images. If NULL, f1_read_image() will create an array of the proper size
which can be freed using deletel].

The alpha parameter controls whether an alpha channel is created and the value that is placed in the
alpha channel. If 0, no alpha channel is generated.

7.4.3 Image Classes

FLTK provides a base image class called FI_Image which supports creating, copying, and drawing images
of various kinds, along with some basic color operations. Images can be used as labels for widgets using
the image () and deimage () methods or drawn directly.

The FI_Image class does almost nothing by itself, but is instead supported by three basic image types:

* FI_Bitmap
* FI_Pixmap
* FI_RGB_Image

The FI_Bitmap class encapsulates a mono-color bitmap image. The draw () method draws the image
using the current drawing color.

The F1_Pixmap class encapsulates a colormapped image. The draw () method draws the image using the
colors in the file, and masks off any transparent colors automatically.

The F1_RGB_Image class encapsulates a full-color (or grayscale) image with 1 to 4 color components.
Images with an even number of components are assumed to contain an alpha channel that is used for
transparency. The transparency provided by the draw() method is either a 24-bit blend against the existing
window contents or a "screen door" transparency mask, depending on the platform and screen color depth.

char fl_can_do_alpha_blending()

f1_can_do_alpha_blending() will return 1, if your platform supports true alpha blending for
RGBA images, or 0, if FLTK will use screen door transparency.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

62 Drawing Things in FLTK

FLTK also provides several image classes based on the three standard image types for common file formats:

* FI_GIF_Image

FI_JPEG_Image
* FI_PNG_Image

e FI_PNM_Image

FI_XBM_Image

e FI_XPM_Image

Each of these image classes load a named file of the corresponding format. The F1_Shared_Image class
can be used to load any type of image file - the class examines the file and constructs an image of the
appropriate type.

Finally, FLTK provides a special image class called FI_Tiled_Image to tile another image object in the
specified area. This class can be used to tile a background image in a FI_Group widget, for example.

virtual void Fl_Tiled_Image::copy();
virtual FI_Image* F1_Tiled_Image::copy(int w, int h);

The copy () method creates a copy of the image. The second form specifies the new size of the image
- the image is resized using the nearest-neighbor algorithm.

void FI_Tiled_Image::draw(int X, int y, int w, int h, int ox, int oy);

The draw () method draws the image object. x, y, w, h indicates a destination rectangle. ox, oy, w, h
is a source rectangle. This source rectangle is copied to the destination. The source rectangle may ex-
tend outside the image, i.e. ox and oy may be negative and w and h may be bigger than the image,
and this area is left unchanged.

void Fl_Tiled_Image::draw(int x, int y)

Draws the image with the upper-left corner at x, y. This is the same as doing draw(X,y,img->w(),img-
>h(),0,0).

7.4.4 Offscreen Drawing

Sometimes it can be very useful to generate a complex drawing in memory first and copy it to the screen
at a later point in time. This technique can significantly reduce the amount of repeated drawing. Offscreen
drawing functions are declared in <FL/x.H>. FI_Double_Window uses offscreen rendering to avoid flick-
ering on systems that don’t support double-buffering natively.

F1_Offscreen fl_create_offscreen(int w, int h)

Create an RGB offscreen buffer with w+h pixels.

void fl_delete_offscreen(Fl_Offscreen)

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

7.4 Drawing Images 63

Delete a previously created offscreen buffer. All drawings are lost.

void fl_begin_offscreen(Fl_Offscreen)

Send all subsequent drawing commands to this offscreen buffer. FLTK can draw into a buffer at any
time. There is no need to wait for an FI_Widget::draw() to occur.

void fl_end_offscreen()

Quit sending drawing commands to this offscreen buffer.

void fl_copy_offscreen(int x, int y, int w, int h, FI_Offscreen osrc, int srcx, int srcy)

Copy a rectangular area of the size wxh from srcx,srcy in the offscreen buffer into the current buffer
at x,y.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

64

Drawing Things in FLTK

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

Chapter 8

Handling Events

This chapter discusses the FLTK event model and how to handle events in your program or widget.

8.1 The FLTK Event Model

Every time a user moves the mouse pointer, clicks a button, or presses a key, an event is generated and sent
to your application. Events can also come from other programs like the window manager.

Events are identified by the integer argument passed to a handle () method that overrides the FI_Widg-
et::handle() virtual method. Other information about the most recent event is stored in static locations and
acquired by calling the Fl::event_x() methods. This static information remains valid until the next event is
read from the window system, so it is ok to look at it outside of the handle () method.

Event numbers can be converted to their actual names using the fl_eventnames[] array defined in #include
<FL/names.h>; see next chapter for details.

In the next chapter, the MyClass::handle() example shows how to override the FI_Widget::handle() method
to accept and process specific events.

8.2 Mouse Events

8.2.1 FL_PUSH

A mouse button has gone down with the mouse pointing at this widget. You can find out what button by
calling Fl::event_button(). You find out the mouse position by calling Fl::event_x() and Fl::event_y().

A widget indicates that it "wants" the mouse click by returning non-zero from its handle () method, as
in the MyClass::handle() example. It will then become the Fl::pushed() widget and will get FL_DRAG and
the matching FI,_RELEASE events. If handle () returns zero then FLTK will try sending the FL_PUSH
to another widget.

822 FL_DRAG

The mouse has moved with a button held down. The current button state is in Fl::event_state(). The mouse
position is in Fl::event_x() and Fl::event_y().

In order to receive FL_DRAG events, the widget must return non-zero when handling FL._PUSH.

66 Handling Events

8.2.3 FL_RELEASE

A mouse button has been released. You can find out what button by calling Fl::event_button().

In order to receive the FL_RELEASE event, the widget must return non-zero when handling FL_PUSH.

8.24 FL_MOVE

The mouse has moved without any mouse buttons held down. This event is sent to the Fl::belowmouse()
widget.

In order to receive F1_MOVE events, the widget must return non-zero when handling FL_ENTER.

8.25 FL_MOUSEWHEEL

The user has moved the mouse wheel. The Fl::event_dx() and Fl::event_dy() methods can be used to find
the amount to scroll horizontally and vertically.

8.3 Focus Events

8.3.1 FL_ENTER

The mouse has been moved to point at this widget. This can be used for highlighting feedback. If a widget
wants to highlight or otherwise track the mouse, it indicates this by returning non-zero from its handle ()
method. It then becomes the Fl::belowmouse() widget and will receive FL_MOVE and FL_LEAVE events.

83.2 FL_LEAVE

The mouse has moved out of the widget.

In order to receive the FL_LEAVE event, the widget must return non-zero when handling FL_ENTER.

8.3.3 FL_FOCUS

This indicates an attempt to give a widget the keyboard focus.

If a widget wants the focus, it should change itself to display the fact that it has the focus, and return
non-zero from its handle () method. It then becomes the Fl::focus() widget and gets FL,_ KEYDOWN,
FIL_KEYUP, and F1_ UNFOCUS events.

The focus will change either because the window manager changed which window gets the focus, or
because the user tried to navigate using tab, arrows, or other keys. You can check Fl::event_key() to figure
out why it moved. For navigation it will be the key pressed and for interaction with the window manager it
will be zero.

8.3.4 FL_UNFOCUS

This event is sent to the previous Fl::focus() widget when another widget gets the focus or the window
loses focus.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

8.4 Keyboard Events 67

8.4 Keyboard Events

8.4.1 FL_KEYBOARD, FL_KEYDOWN, FL_KEYUP

A key was pressed (FL_KEYDOWN) or released (FL_KEYUP). FL_KEYBOARD is a synonym for FL_-
KEYDOWN, and both names are used interchangeably in this documentation.

The key can be found in Fl::event_key(). The text that the key should insert can be found with Fl::event_t-
ext() and its length is in Fl::event_length().

If you use the key, then handle () should return 1. If you return zero then FLTK assumes you ignored
the key and will then attempt to send it to a parent widget. If none of them want it, it will change the event
into a FI,_ SHORTCUT event. FL_KEYBOARD events are also generated by the character palette/map.

To receive FL_KEYBOARD events you must also respond to the FL_FOCUS and FL_UNFOCUS events.

If you are writing a text-editing widget you may also want to call the Fl::compose() function to translate
individual keystrokes into characters.

FL_KEYUP events are sent to the widget that currently has focus. This is not necessarily the same widget
that received the corresponding FL_KEYDOWN event because focus may have changed between events.

8.4.2 FL_SHORTCUT

If the Fl::focus() widget is zero or ignores an FL_KEYBOARD event then FLTK tries sending this event to
every widget it can, until one of them returns non-zero. FL_ SHORTCUT is first sent to the Fl::belowmouse()
widget, then its parents and siblings, and eventually to every widget in the window, trying to find an object
that returns non-zero. FLTK tries really hard to not to ignore any keystrokes!

You can also make "global" shortcuts by using Fl::add_handler(). A global shortcut will work no matter
what windows are displayed or which one has the focus.

8.5 Widget Events

8.5.1 FL_DEACTIVATE

This widget is no longer active, due to deactivate() being called on it or one of its parents. Please note
that although active() may still return true for this widget after receiving this event, it is only truly active if
active() is true for both it and all of its parents. (You can use active_r() to check this).

8.5.2 FL_ACTIVATE

This widget is now active, due to activate() being called on it or one of its parents.

8.5.3 FL_HIDE

This widget is no longer visible, due to hide() being called on it or one of its parents, or due to a parent
window being minimized. Please note that although visible() may still return true for this widget after
receiving this event, it is only truly visible if visible() is true for both it and all of its parents. (You can use
visible_r() to check this).

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

68 Handling Events

8.5.4 FL_SHOW

This widget is visible again, due to show() being called on it or one of its parents, or due to a parent window
being restored. A child FI_Window will respond to this by actually creating the window if not done already,
so if you subclass a window, be sure to pass FI_ SHOW to the base class handle () method!

Note

The events in this chapter ("Widget Events"), i.e. FL_ACTIVATE, FL_DEACTIVATE, FL_SHOW,
and FL_HIDE, are the only events deactivated and invisible widgets can usually get, depending on
their states. Under certain circumstances, there may also be FL_LEAVE or FL_UNFOCUS events
delivered to deactivated or hidden widgets.

8.6 Clipboard Events

8.6.1 FL_PASTE

You should get this event some time after you call Fl::paste(). The contents of Fl::event_text() is the text to
insert and the number of characters is in Fl::event_length().

8.6.2 FL_SELECTIONCLEAR

The Fl::selection_owner() will get this event before the selection is moved to another widget. This indicates
that some other widget or program has claimed the selection. Motif programs used this to clear the selection
indication. Most modern programs ignore this.

8.7 Drag and Drop Events

FLTK supports drag and drop of text and files from any application on the desktop to an FLTK widget.
Text is transferred using UTF-8 encoding. Files are received as a list of full path and file names, separated
by newline. On some platforms, path names are prepended with file://. See Fl::dnd() for drag and
drop from an FLTK widget.

The drag and drop data is available in Fl::event_text() at the concluding FL._PASTE. On some platforms,
the event text is also available for the FL,_DND_x events, however application must not depend on that
behavior because it depends on the protocol used on each platform.

FL_DND_x* events cannot be used in widgets derived from FI_Group or FI_Window.

8.7.1 FL_DND_ENTER

The mouse has been moved to point at this widget. A widget that is interested in receiving drag’n’drop data
must return 1 to receive F1L_DND_DRAG, FL_DND_LEAVE and FL_DND_RELEASE events.

8.7.2 FL_DND_DRAG

The mouse has been moved inside a widget while dragging data. A widget that is interested in receiving
drag’n’drop data should indicate the possible drop position.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

8.8 Fl::event_x() methods 69

8.7.3 FL_DND_LEAVE

The mouse has moved out of the widget.

8.7.4 FL_DND_RELEASE

The user has released the mouse button dropping data into the widget. If the widget returns 1, it will receive
the data in the immediately following FL,_PASTE event.

8.8 Fl::event_x() methods

FLTK keeps the information about the most recent event in static storage. This information is good until
the next event is processed. Thus it is valid inside handle () and callback () methods.

These are all trivial inline functions and thus very fast and small:
¢ Fl::event_button()
¢ Fl::event_clicks()
¢ Fl::event_dx()

* Fl::event_dy()

¢ Fl::event_inside()
e Fl::event_is_click()
* Fl::event_key()

* Fl::event_length()
¢ Fl::event_state()
¢ Fl::event_text()

¢ Fl::event_x()

¢ Fl::event_x_root()
* Fl::event_y()

* Fl::event_y_root()
* Fl::get_key()

* Fl::get_mouse()

¢ Fl::test_shortcut()

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

70 Handling Events

8.9 Event Propagation

Widgets receive events via the virtual handle() function. The argument indicates the type of event that
can be handled. The widget must indicate if it handled the event by returning 1. FLTK will then remove
the event and wait for further events from the host. If the widget’s handle function returns 0, FLTK may
redistribute the event based on a few rules.

Most events are sent directly to the handle () method of the FI_Window that the window system says
they belong to. The window (actually the FI_Group that F1_Window is a subclass of) is responsible for
sending the events on to any child widgets. To make the FI_Group code somewhat easier, FLTK sends
some events (FL,_DRAG, F1_ RELEASE, FL,_KEYBOARD, FL_SHORTCUT, FL_UNFOCUS, and F1._IL—
EAVE) directly to leaf widgets. These procedures control those leaf widgets:

¢ Fl::add_handler()

¢ Fl::belowmouse()

¢ Fl::focus()

* Fl::grab()

¢ Fl::modal()

* Fl::pushed()

* Fl::release() (deprecated, see Fl::grab(0))
* FI_Widget::take_focus()

FLTK propagates events along the widget hierarchy depending on the kind of event and the status of the
UL Some events are injected directly into the widgets, others may be resent as new events to a different
group of receivers.

Mouse click events are first sent to the window that caused them. The window then forwards the event
down the hierarchy until it reaches the widget that is below the click position. If that widget uses the given
event, the widget is marked "pushed" and will receive all following mouse motion (FL_DRAG) events until
the mouse button is released.

Mouse motion (FL_MOVE) events are sent to the Fl::belowmouse() widget, i.e. the widget that returned 1
on the last FL_ENTER event.

Mouse wheel events are sent to the window that caused the event. The window propagates the event down
the tree, first to the widget that is below the mouse pointer, and if that does not succeed, to all other
widgets in the group. This ensures that scroll widgets work as expected with the widget furthest down in
the hierarchy getting the first opportunity to use the wheel event, but also giving scroll bars, that are not
directly below the mouse a chance.

Keyboard events are sent directly to the widget that has keyboard focus. If the focused widget rejects the
event, it is resent as a shortcut event, first to the top-most window, then to the widget below the mouse
pointer, propagating up the hierarchy to all its parents. Those send the event also to all widgets that are
not below the mouse pointer. Now if that did not work out, the shortcut is sent to all registered shortcut
handlers.

If we are still unsuccessful, the event handler flips the case of the shortcut letter and starts over. Finally, if
the key is "escape”, FLTK sends a close event to the top-most window.

All other events are pretty much sent right away to the window that created the event.

Widgets can "grab" events. The grabbing window gets all events exclusively, but usually by the same rules
as described above.

Windows can also request exclusivity in event handling by making the window modal.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

8.10 FLTK Compose-Character Sequences 71

8.10 FLTK Compose-Character Sequences

The character composition done by F1_Input widget requires that you call the Fl::compose() function if you
are writing your own text editor widget.

Currently, all characters made by single key strokes with or without modifier keys, or by system-defined
character compose sequences (that can involve dead keys or a compose key) can be input. You should call
Fl::compose() in case any enhancements to this processing are done in the future. The interface has been
designed to handle arbitrary UTF-8 encoded text.

The following methods are provided for character composition:

¢ Fl::compose()

* Fl::compose_reset()

Under Mac OS X, FLTK "previews" partially composed sequences.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

72

Handling Events

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

Chapter 9

Adding and Extending Widgets

This chapter describes how to add your own widgets or extend existing widgets in FLTK.

9.1 Subclassing

New widgets are created by subclassing an existing FLTK widget, typically FI_Widget for controls and
FI_Group for composite widgets.

A control widget typically interacts with the user to receive and/or display a value of some sort.

A composite widget holds a list of child widgets and handles moving, sizing, showing, or hiding them as
needed. Fl1_Group is the main composite widget class in FLTK, and all of the other composite widgets
(F1_Pack, Fl_Scroll, F1_Tabs, Fl_Tile, and FI_Window) are subclasses of it.

You can also subclass other existing widgets to provide a different look or user-interface. For example, the
button widgets are all subclasses of F1_Button since they all interact with the user via a mouse button click.
The only difference is the code that draws the face of the button.

9.2 Making a Subclass of FI Widget

Your subclasses can directly descend from F1_Widget or any subclass of FI_Widget. F1_Widget has only
four virtual methods, and overriding some or all of these may be necessary.

9.3 The Constructor

The constructor should have the following arguments:

MyClass (int x, int y, int w, int h, const char xlabel = 0);

This will allow the class to be used in FLUID without problems.

The constructor must call the constructor for the base class and pass the same arguments:

MyClass::MyClass (int x, int y, int w, int h, const char xlabel)
: F1_Widget (x, y, w, h, label) {
// do initialization stuff...

}

74

Adding and Extending Widgets

FI_Widget’s protected constructor sets x (), y (), w(), h(), and label () to the passed values and

initializes the other instance variables to:

type (0);

box (FL_NO_BOX) ;

color (FL_BACKGROUND_COLOR) ;
selection_color (FL_BACKGROUND_COLOR) ;
labeltype (FL_NORMAL_LABEL) ;
labelstyle (FL_NORMAL_STYLE) ;
labelsize (FL_NORMAL_SIZE) ;
labelcolor (FL_FOREGROUND_COLOR) ;
align (FL_ALIGN_CENTER) ;

callback (default_callback,0);
flags (ACTIVE|VISIBLE) ;

image (0) ;

deimage (0) ;

9.4 Protected Methods of FI_Widget

The following methods are provided for subclasses to use:

e clear_visible()
* damage()

e draw_box()

e draw_focus()
e draw_label()
* set_flag()

e set_visible()
e test_shortcut()

* type()

void FI_Widget::damage(uchar mask)

void FI_Widget::damage(uchar mask, int X, int y, int w, int h)

uchar F1_Widget::damage()

The first form indicates that a partial update of the object is needed. The bits in mask are OR’d into
damage(). Your draw () routine can examine these bits to limit what it is drawing. The public method
F1_Widget::redraw() simply does F1_Widget : : damage (FL_DAMAGE_ALL), but the implemen-

tation of your widget can call the public damage (n).

The second form indicates that a region is damaged. If only these calls are done in a window (no calls
to damage (n)) then FLTK will clip to the union of all these calls before drawing anything. This
can greatly speed up incremental displays. The mask bits are OR’d into damage () unless this is a

FI_Window widget.

The third form returns the bitwise-OR of all damage (n) calls done since the last draw () .

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

9.4 Protected Methods of F1_Widget 75

When redrawing your widgets you should look at the damage bits to see what parts of your widget
need redrawing. The handle () method can then set individual damage bits to limit the amount of
drawing that needs to be done:

MyClass::handle (int event) {

if (change_to_partl) damage (1) ;
if (change_to_part2) damage (2);
if (change_to_part3) damage (4);
}
MyClass::draw () {
if (damage() & FL_DAMAGE_ALL) {

. draw frame/box and other static stuff ...

}
if (damage() & (FL_DAMAGE_ALL | 1)) draw_partl();
if (damage() & (FL_DAMAGE_ALL | 2)) draw_part2();

if (damage() & (FL_DAMAGE_ALL | 4)) draw_part3();
}

Todo
Clarify FI_Window::damage(uchar) handling - seems confused/wrong? ORing value doesn’t match
setting behaviour in FL._Widget.H!

void F1_Widget::draw_box() const

void FI_Widget::draw_box(Fl_Boxtype t, F1_Color ¢) const

The first form draws this widget’s box (), using the dimensions of the widget. The second form uses
t as the box type and c as the color for the box.

void F1_Widget::draw_focus()

void FI_Widget::draw_focus(FI_Boxtype t, int x, int y, int w, int h) const

Draws a focus box inside the widget’s bounding box. The second form allows you to specify a different
bounding box.

void F1_Widget::draw_label() const

void FI_Widget::draw_label(int x, int y, int w, int h) const

void F1_Widget::draw_label(int x, int y, int w, int h, F1_Align align) const

The first form is the usual function for a draw () method to call to draw the widget’s label. It does
not draw the label if it is supposed to be outside the box (on the assumption that the enclosing group
will draw those labels).

The second form uses the passed bounding box instead of the widget’s bounding box. This is useful
so "centered" labels are aligned with some feature, like a moving slider.

The third form draws the label anywhere. It acts as though FI,_ALIGN_INSIDE has been forced on
so the label will appear inside the passed bounding box. This is designed for parent groups to draw
labels with.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

76 Adding and Extending Widgets

void FI_Widget::set_flag(int c)

Calling set_flag (SHORTCUT_LABEL) modifies the behavior of draw_label() so that *&’ charac-
ters cause an underscore to be printed under the next letter.

void FI_Widget::set_visible()
void F1_Widget::clear_visible()

Fast inline versions of F1_Widget::hide() and F1_Widget::show(). These do not send the FI,_HIDE
and F1__SHOW events to the widget.

int F1_Widget::test_shortcut()

static int F1_Widget::test_shortcut(const char *s)

The first version tests F1_Widget::label() against the current event (which should be a F1,_SHORTCUT
event). If the label contains a *&’ character and the character after it matches the keypress, this returns
true. This returns false if the SHORTCUT_LABEL flag is off, if the label is NULL, or does not have a
&’ character in it, or if the keypress does not match the character.

The second version lets you do this test against an arbitrary string.

Todo

Clarify F1_Widget::test_shortcut() explanations. F1_Widget.h says Internal Use only, but subclassing
chapter gives details!

uchar FI_Widget::type() const
void F1_Widget::type(uchar t)

The property FI_Widget::type() can return an arbitrary 8-bit identifier, and can be set with the protected
method type (uchar t). This value had to be provided for Forms compatibility, but you can use it
for any purpose you want. Try to keep the value less than 100 to not interfere with reserved values.

FLTK does not use RTTI (Run Time Typing Information), to enhance portability. But this may change
in the near future if RTTI becomes standard everywhere.

If you don’t have RTTI you can use the clumsy FLTK mechanism, by having type () use a unique
value. These unique values must be greater than the symbol FL_RESERVED_TYPE (which is 100)
and less than F1L_WINDOW (unless you make a subclass of FI_Window). Look through the header files
for F1L_RESERVED_TYPE to find an unused number. If you make a subclass of FI_Window you must
use FI,_WINDOW + n (where n must be in the range 1 to 7).

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

9.5 Handling Events 77

9.5 Handling Events

The virtual method F1_Widget::handle(int event) is called to handle each event passed to the widget. It
can:

» Change the state of the widget.

Call F1_Widget::redraw() if the widget needs to be redisplayed.

Call F1_Widget::damage(uchar c) if the widget needs a partial-update (assuming you provide support
for this in your draw() method).

Call FI_Widget::do_callback() if a callback should be generated.

Call F1_Widget::handle() on child widgets.

Events are identified by the integer argument. Other information about the most recent event is stored in
static locations and acquired by calling the Fl::event_x() methods. This information remains valid until
another event is handled.

Here is a sample handle () method for a widget that acts as a pushbutton and also accepts the keystroke
" x' to cause the callback:

int MyClass::handle (int event) {
switch (event) {
case FL_PUSH:
highlight = 1;
redraw () ;
return 1;
case FL_DRAG: {
int t = Fl::event_inside (this);
if (t != highlight) {
highlight = t;
redraw () ;
}
}
return 1;
case FL_RELEASE:
if (highlight) {
highlight = 0;
redraw () ;
do_callback();
// never do anything after a callback, as the callback
// may delete the widget!
}
return 1;
case FL_SHORTCUT:
if (Fl::event_key () == 'x") {
do_callback();
return 1;
}
return O;
default:
return F1l_Widget::handle (event);

You must return non-zero if your handle () method uses the event. If you return zero, the parent widget
will try sending the event to another widget.

For debugging purposes, event numbers can be printed as their actual event names using the fl_eventnam-
es[] array, e.g.:

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

78 Adding and Extending Widgets

#include <FL/names.h> // defines fl_eventnames][]

[..]

int MyClass::handle(int e) {
printf ("Event was %s (%d)\n", fl_eventnames[e], e); // e.g. "Event was
FL_PUSH (1)"
[..1]

9.6 Drawing the Widget

The draw () virtual method is called when FLTK wants you to redraw your widget. It will be called if
and only if damage () is non-zero, and damage () will be cleared to zero after it returns. The draw ()
method should be declared protected so that it can’t be called from non-drawing code.

The damage () value contains the bitwise-OR of all the damage (n) calls to this widget since it was last
drawn. This can be used for minimal update, by only redrawing the parts whose bits are set. FLTK will
turn on the FIL_DAMAGE_ALL bit if it thinks the entire widget must be redrawn, e.g. for an expose event.

Expose events (and the damage(mask,x,y,w,h) function described above) will cause draw () to be called
with FLTK’s clipping turned on. You can greatly speed up redrawing in some cases by testing £1_not_ -
clipped(x,y,w,h) or f1_clip_box() and skipping invisible parts.

Besides the protected methods described above, FLTK provides a large number of basic drawing functions,
which are described in the chapter Drawing Things in FLTK.

9.7 Resizing the Widget

The resize (x,y,w,h) method is called when the widget is being resized or moved. The arguments
are the new position, width, and height. x (), v (), w (), and h () still remain the old size. You must call
resize () on your base class with the same arguments to get the widget size to actually change.

This should not call redraw (), at least if only the x () and y () change. This is because composite
widgets like FI_Scroll may have a more efficient way of drawing the new position.

9.8 Making a Composite Widget

A "composite" widget contains one or more "child" widgets. To make a composite widget you should
subclass F1_Group. It is possible to make a composite object that is not a subclass of FI_Group, but you’ll
have to duplicate the code in F1_Group anyways.

Instances of the child widgets may be included in the parent:
class MyClass : public F1l_Group {

F1l_Button the_button;
Fl_Slider the_slider;

bi
The constructor has to initialize these instances. They are automatically added to the group, since the -

FI_Group constructor does FlI_Group::begin(). Don’t forget to call FI_Group::end() or use the FI_End
pseudo-class:

MyClass::MyClass (int x, int y, int w, int h)
Fl_Group(x, y, w, h),

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

9.8 Making a Composite Widget 79

the_button(x + 5, y + 5, 100, 20),
the_slider(x, y + 50, w, 20)
{
... (you could add dynamically created child widgets here) ...

end(); // don’'t forget to do this!
}

The child widgets need callbacks. These will be called with a pointer to the children, but the widget itself
may be found in the parent () pointer of the child. Usually these callbacks can be static private methods,
with a matching private method:

void MyClass::static_slider_cb(F1l_Widget* v, void %) { // static method
((MyClassx*) (v—>parent ())->slider_cb();

}

void MyClass::slider_cb () { // normal method

use (the_slider->value());

}

If you make the handle () method, you can quickly pass all the events to the children using the FI_Gro-
up::handle() method. You don’t need to override handle () if your composite widget does nothing other
than pass events to the children:

int MyClass::handle (int event) {
if (F1_Group::handle(event)) return 1;
. handle events that children don’t want

If you override draw () you need to draw all the children. If redraw () or damage () is called on a
child, damage (FL_DAMAGE_CHILD) is done to the group, so this bit of damage () can be used to
indicate that a child needs to be drawn. It is fastest if you avoid drawing anything else in this case:

int MyClass::draw() {

Fl_Widget =*const*a = array();
if (damage() == FL_DAMAGE_CHILD) { // only redraw some children
for (int i = children(); i --; a ++) update_child(x=*a);

} else { // total redraw
. draw background graphics
// now draw all the children atop the background:
for (int i = children_; i -—; a ++) {
draw_child (x+a);
draw_outside_label (x*a); // you may not need to do this

}

F1_Group provides some protected methods to make drawing easier:

draw_child()

draw_children()

e draw_outside_label()

update_child()

void Fl_Group::draw_child(FI_Widget &widget) const

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

80 Adding and Extending Widgets

This will force the child’s damage () bits all to one and call draw () on it, then clear the damage ().
You should call this on all children if a total redraw of your widget is requested, or if you draw some-
thing (like a background box) that damages the child. Nothing is done if the child is not visible ()
or if it is clipped.

void F1_Group::draw_children()

A convenience function that draws all children of the group. This is useful if you derived a widget
from FI_Group and want to draw a special border or background. You can call draw_children ()
from the derived draw () method after drawing the box, border, or background.

void Fl_Group::draw_outside_label(const FI_Widget &widget) const

Draw the labels that are not drawn by draw_label(). If you want more control over the label positions
you might want to call child->draw_label (x,y,w,h,a).

void FI_Group::update_child(F1_Widget& widget) const

Draws the child only if its damage () is non-zero. You should call this on all the children if your own
damage is equal to FL_DAMAGE_CHILD. Nothing is done if the child is not visible () or if it is
clipped.

9.9 Cut and Paste Support
FLTK provides routines to cut and paste 8-bit text (in the future this may be UTF-8) between applications:

* Fl::paste()
¢ Fl::selection()

¢ Fl::selection_owner()

It may be possible to cut/paste non-text data by using Fl::add_handler(). Note that handling events beyond
those provided by FLTK may be operating system specific. See Operating System Issues for more details.

9.10 Drag And Drop Support

FLTK provides routines to drag and drop 8-bit text between applications:
Drag’n’drop operations are initiated by copying data to the clipboard and calling the function Fl::dnd().

Drop attempts are handled via the following events, already described under Drag and Drop Events in a
previous chapter:

e FL._ DND_ENTER

e FI,_DND_DRAG

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

9.11 Making a subclass of FI_Window 81

e FI,_DND_LEAVE
e FI, DND_RELEASE

o FI, PASTE

9.11 Making a subclass of FI_Window

You may want your widget to be a subclass of FI_Window, FI_Double_Window, or FI_Gl_Window. This
can be useful if your widget wants to occupy an entire window, and can also be used to take advantage of
system-provided clipping, or to work with a library that expects a system window ID to indicate where to
draw.

Subclassing FI_Window is almost exactly like subclassing FI_Group, and in fact you can easily switch a
subclass back and forth. Watch out for the following differences:

1. FI_Window is a subclass of FI_Group so make sure your constructor calls end () unless you actu-
ally want children added to your window.

2. When handling events and drawing, the upper-left corner is at 0,0, not x () , v () as in other FI_W-
idget’s. For instance, to draw a box around the widget, call draw_box (0,0, w () ,h ()), rather
than draw_box (x () ,y(),w(),h()).

You may also want to subclass FI_Window in order to get access to different visuals or to change other
attributes of the windows. See the Operating System Issues chapter for more information.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

82

Adding and Extending Widgets

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

Chapter 10

Using OpenGL

This chapter discusses using FLTK for your OpenGL applications.

10.1 Using OpenGL in FLTK

The easiest way to make an OpenGL display is to subclass FI_Gl_Window. Your subclass must imple-
ment a draw () method which uses OpenGL calls to draw the display. Your main program should call
redraw () when the display needs to change, and (somewhat later) FLTK will call draw ().

With a bit of care you can also use OpenGL to draw into normal FLTK windows. This allows you to
use Gouraud shading for drawing your widgets. To do this you use the gl_start() and gl_finish() functions
around your OpenGL code.

You must include FLTK’s <FL/gl.h> header file. It will include the file <GL/gl.h>, define some
extra drawing functions provided by FLTK, and include the <windows . h> header file needed by WIN32
applications.

10.2 Making a Subclass of FI_GI_Window

To make a subclass of FI_GI_Window, you must provide:

¢ A class definition.
e A draw () method.

* A handle () method if you need to receive input from the user.

If your subclass provides static controls in the window, they must be redrawn whenever the FL_DAMA-
GE_ALL bit is set in the value returned by damage (). For double-buffered windows you will need to
surround the drawing code with the following code to make sure that both buffers are redrawn:

#ifndef MESA
glDrawBuffer (GL_FRONT_AND_BACK) ;
#endif // !MESA
. draw stuff here ...
#ifndef MESA
glDrawBuffer (GL_BACK) ;
#endif // !MESA

84 Using OpenGL

Note:

If you are using the Mesa graphics library, the call to glDrawBuffer () is not required and will
slow down drawing considerably. The preprocessor instructions shown above will optimize your code
based upon the graphics library used.

10.2.1 Defining the Subclass
To define the subclass you just subclass the FI_GIl_Window class:

class MyWindow : public F1_Gl_Window {
void draw();
int handle (int);

public:
MyWindow (int X, int Y, int W, int H, const char xL)
F1_Gl_Window(X, Y, W, H, L) {}
bi

The draw () and handle () methods are described below. Like any widget, you can include additional
private and public data in your class (such as scene graph information, etc.)

10.2.2 The draw() Method
The draw () method is where you actually do your OpenGL drawing:

void MyWindow: :draw () {

if (!valid()) {
set up projection, viewport, etc
window size is in w() and h{().

valid() is turned on by FLTK after draw() returns

draw

10.2.3 The handle() Method
The handle () method handles mouse and keyboard events for the window:

int MyWindow::handle (int event) {
switch (event) {
case FL_PUSH:
mouse down event
position in Fl::event_x() and Fl::event_y ()
return 1;
case FL_DRAG:
mouse moved while down event
return 1;
case FL_RELEASE:
mouse up event
return 1;
case FL_FOCUS
case FL_UNFOCUS
Return 1 if you want keyboard events, 0 otherwise
return 1;
case FL_KEYBOARD:
keypress, key is in Fl::event_key (), ascii in Fl::event_text ()

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

10.3 Using OpenGL in Normal FLTK Windows 85

. Return 1 if you understand/use the keyboard event, 0 otherwise...
return 1;
case FL_SHORTCUT:
shortcut, key is in Fl::event_key (), ascii in Fl::event_text ()
. Return 1 if you understand/use the shortcut event, 0 otherwise...
return 1;
default:
// pass other events to the base class...
return F1_Gl_Window: :handle (event) ;

}

When handle () is called, the OpenGL context is not set up! If your display changes, you should
call redraw () and let draw () do the work. Don’t call any OpenGL drawing functions from inside
handle () !

You can call some OpenGL stuff like hit detection and texture loading functions by doing:
case FL_PUSH:
make_current () ; // make OpenGL context current
if (!valid()) |
set up projection exactly the same as draw ...
valid(1); // stop it from doing this next time
}

. ok to call NON-DRAWING OpenGL code here, such as hit
detection, loading textures, etc...

Your main program can now create one of your windows by doing new MyWindow (...).

You can also use your new window class in FLUID by:

1. Putting your class definition in a MyWindow . H file.
2. Creating a F1_Box widget in FLUID.

3. In the widget panel fill in the "class" field with MyWindow. This will make FLUID produce con-
structors for your new class.

4. In the "Extra Code" field put #include "MyWindow.H", so that the FLUID output file will
compile.

You must put glwindow->show () in your main code after calling show () on the window containing
the OpenGL window.

10.3 Using OpenGL in Normal FLTK Windows

You can put OpenGL code into the draw () method, as described in Drawing the Widget in the previous
chapter, or into the code for a boxtype or other places with some care.

Most importantly, before you show any windows, including those that don’t have OpenGL drawing, you
must initialize FLTK so that it knows it is going to use OpenGL. You may use any of the symbols described
for F1_G1_Window: :mode () to describe how you intend to use OpenGL:

Fl::gl_visual (FL_RGB);

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

86 Using OpenGL

You can then put OpenGL drawing code anywhere you can draw normally by surrounding it with gl_start()
and gl_finish() to set up, and later release, an OpenGL context with an orthographic projection so that 0,0
is the lower-left corner of the window and each pixel is one unit. The current clipping is reproduced with
OpenGL glScissor () commands. These functions also synchronize the OpenGL graphics stream with
the drawing done by other X, WIN32, or FLTK functions.

gl_start();
. put your OpenGL code here ...
gl_finish{();

The same context is reused each time. If your code changes the projection transformation or anything else
you should use glPushMatrix () and glPopMatrix () functions to put the state back before calling
gl_finish{().

You may want to use F1_Window: : current () —>h () to get the drawable height so that you can flip
the Y coordinates.
Unfortunately, there are a bunch of limitations you must adhere to for maximum portability:

* You must choose a default visual with Fl::gl_visual().

* You cannot pass FL,_DOUBLE to Fl::gl_visual().

* You cannot use FlI_Double_Window or FI_Overlay_Window.

Do notcall gl_start () orgl_finish () when drawing into an FI_Gl_Window !

10.4 OpenGL Drawing Functions

FLTK provides some useful OpenGL drawing functions. They can be freely mixed with any OpenGL
calls, and are defined by including <FL/gl.h> which you should include instead of the OpenGL header
<GL/gl.h>.

void gl_color(F1_Color)

Sets the current OpenGL color to a FLTK color. For color-index modes it will use f1_xpixel (c),
which is only right if this window uses the default colormap!

void gl_rect(int X, int y, int w, int h)

void gl_rectf(int x, int y, int w, int h)

Outlines or fills a rectangle with the current color. If FI_GI_Window::ortho() has been called, then the
rectangle will exactly fill the pixel rectangle passed.

void gl_font(FI_Font fontid, int size)

Sets the current OpenGL font to the same font you get by calling fl_font().

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

10.5 Speeding up OpenGL 87

int gl_height()

int gl_descent()

float gl_width(const char xs)

float gl_width(const char s, int n)

float gl_width(uchar c)

Returns information about the current OpenGL font.

void gl_draw(const char xs)

void gl_draw(const char s, int n)

Draws a nul-terminated string or an array of n characters in the current OpenGL font at the current
raster position.

void gl_draw(const char xs, int x, int y)
void gl_draw(const char s, int n, int x, int y)
void gl_draw(const char xs, float x, float y)

void gl_draw(const char xs, int n, float x, float y)

Draws a nul-terminated string or an array of n characters in the current OpenGL font at the given
position.

void gl_draw(const char s, int X, int y, int w, int h, F1_Align)

Draws a string formatted into a box, with newlines and tabs expanded, other control characters changed
to X, and aligned with the edges or center. Exactly the same output as fl_draw().

10.5 Speeding up OpenGL

Performance of F1_GI_Window may be improved on some types of OpenGL implementations, in particular
MESA and other software emulators, by setting the GL_ SWAP_ TYPE environment variable. This variable
declares what is in the backbuffer after you do a swapbuffers.

* setenv GL_SWAP_TYPE COPY

This indicates that the back buffer is copied to the front buffer, and still contains its old data. This
is true of many hardware implementations. Setting this will speed up emulation of overlays, and
widgets that can do partial update can take advantage of this as damage () will not be cleared to -1.

¢ setenv GL_SWAP_TYPE NODAMAGE

This indicates that nothing changes the back buffer except drawing into it. This is true of MESA and
Win32 software emulation and perhaps some hardware emulation on systems with lots of memory.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

88 Using OpenGL

 All other values for GL_SWAP_TYPE, and not setting the variable, cause FLTK to assume that the
back buffer must be completely redrawn after a swap.

This is easily tested by running the gl_overlay demo program and seeing if the display is correct when you
drag another window over it or if you drag the window off the screen and back on. You have to exit and
run the program again for it to see any changes to the environment variable.

10.6 Using OpenGL Optimizer with FLTK

OpenGL Optimizer is ascene graph toolkit for OpenGL available from Silicon Graphics for IRIX and
Microsoft Windows. It allows you to view large scenes without writing a lot of OpenGL code.

OptimizerWindow Class Definition

To use OpenGL Optimizer with FLTK you’ll need to create a subclass of Fl_Gl_Widget that
includes several state variables:

class OptimizerWindow : public F1l_Gl_Window {
csContext xcontext_; // Initialized to 0 and set by draw()...
csDrawAction *draw_action_; // Draw action...
csGroup *scene_; // Scene to draw...
csCamara scamera_; // Viewport for scene...

void draw();

public:
OptimizerWindow (int X, int Y, int W, int H, const char *L)
: F1_Gl_Window(X, Y, W, H, L) {
context_ = (csContext *)0;
draw_action_ = (csDrawAction =)0;
scene_ = (csGroup *)0;
camera_ = (csCamera *)0;

}
void scene (csGroup *g) { scene_ = g; redraw(); }

void camera (csCamera =*c) {
camera_ = C;
if (context_) {
draw_action_->setCamera (camera_) ;
camera_—->draw (draw_action_) ;
redraw () ;
}
}
bi

The camera() Method

The camera () method sets the camera (projection and viewpoint) to use when drawing the scene.
The scene is redrawn after this call.

The draw() Method

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

http://www.sgi.com/software/optimizer
http://www.sgi.com/software/optimizer

10.6 Using OpenGL Optimizer with FLTK 89

The draw () method performs the needed initialization and does the actual drawing:

void OptimizerWindow: :draw () {
if (!context_) {
// This is the first time we’ve been asked to draw; create the
// Optimizer context for the scene...

#ifdef WIN32
context_ = new csContext ((HDC)fl_getHDC());
context_->ref ();
context_->makeCurrent ((HDC) £f1_getHDC()) ;
#else
context_ = new csContext (fl_display, fl_visual);
context_->ref ();
context_->makeCurrent (f1_display, fl_window);
#endif // WIN32

perform other context setup as desired
// Then create the draw action to handle drawing things...

draw_action_ = new csDrawAction;
if (camera_) {
draw_action_->setCamera (camera_) ;
camera_->draw (draw_action_);
}
} else {
#ifdef WIN32
context_->makeCurrent ((HDC) £f1_getHDC()) ;
#else
context_->makeCurrent (f1_display, fl_window);
#endif // WIN32
}

if (!valid()) {
// Update the viewport for this context...
context_->setViewport (0, 0, w(), h());

// Clear the window. ..
context_->clear (csContext::COLOR_CLEAR | csContext::DEPTH_CLEAR,

0.0f, // Red
0.0f, // Green
0.0f, // Blue
1.0f); // Alpha

// Then draw the scene (if any)...
if (scene_)
draw_action_->apply (scene_);

The scene() Method

The scene () method sets the scene to be drawn. The scene is a collection of 3D objects in a
csGroup. The scene is redrawn after this call.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

90

Using OpenGL

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

Chapter 11

Programming with FLUID

This chapter shows how to use the Fast Light User-Interface Designer ("FLUID") to create your GUIs.

Subchapters:

* What is FLUID?
e Running FLUID Under UNIX
* Running FLUID Under Microsoft Windows

e Compiling 1l files

A Short Tutorial

FLUID Reference
¢ Internationalization with FLUID

¢ Known limitations

11.1 What is FLUID?

The Fast Light User Interface Designer, or FLUID, is a graphical editor that is used to produce FLTK
source code. FLUID edits and saves its state in . £1 files. These files are text, and you can (with care) edit
them in a text editor, perhaps to get some special effects.

FLUID can "compile" the . £1 file into a . cxx and a . h file. The . cxx file defines all the objects from
the . £1 file and the .h file declares all the global ones. FLUID also supports localization (Internationali-
zation) of label strings using message files and the GNU gettext or POSIX catgets interfaces.

A simple program can be made by putting all your code (including a main () function) into the . £1 file
and thus making the . cxx file a single source file to compile. Most programs are more complex than this,
so you write other . cxx files that call the FLUID functions. These . cxx files must #include the .h
file or they can #include the . cxx file so it still appears to be a single source file.

92 Programming with FLUID

#include

L

Figure 11.1: FLUID organization

Normally the FLUID file defines one or more functions or classes which output C++ code. Each function
defines a one or more FLTK windows, and all the widgets that go inside those windows.

Widgets created by FLUID are either "named", "complex named" or "unnamed". A named widget has
a legal C++ variable identifier as its name (i.e. only alphanumeric and underscore). In this case FLUID
defines a global variable or class member that will point at the widget after the function defining it is called.
A complex named object has punctuation such as ’ .” or / —>’ or any other symbols in its name. In this
case FLUID assigns a pointer to the widget to the name, but does not attempt to declare it. This can be
used to get the widgets into structures. An unnamed widget has a blank name and no pointer is stored.

Widgets may either call a named callback function that you write in another source file, or you can supply
a small piece of C++ source and FLUID will write a private callback function into the . cxx file.

11.2 Running FLUID Under UNIX

To run FLUID under UNIX, type:

fluid filename.fl &

to edit the . f1 file filename.f1l. If the file does not exist you will get an error pop-up, but if you
dismiss it you will be editing a blank file of that name. You can run FLUID without any name, in which
case you will be editing an unnamed blank setup (but you can use save-as to write it to a file).

You can provide any of the standard FLTK switches before the filename:

-display host:n.n
—geometry WxH+X+Y
-title windowtitle
-name classname
—iconic

-fg color

-bg color

-bg2 color

—scheme schemename

Changing the colors may be useful to see what your interface will look at if the user calls it with the
same switches. Similarly, using "-scheme plastic" will show how the interface will look using the "plastic"
scheme.

In the current version, if you don’t put FLUID into the background with ’ &’ then you will be able to abort
FLUID by typing CTRL~-C on the terminal. It will exit immediately, losing any changes.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

11.3 Running FLUID Under Microsoft Windows 93

11.3 Running FLUID Under Microsoft Windows

To run FLUID under WIN32, double-click on the FLUID.exe file. You can also run FLUID from the
Command Prompt window. FLUID always runs in the background under WIN32.

11.4 Compiling .fl files

FLUID can also be called as a command-line "compiler” to create the . cxx and .h file from a . £1 file.
To do this type:

fluid -c filename.fl

This will read the filename. f1 file and write filename.cxx and filename.h. Any leading di-
rectory on filename. £1 will be stripped, so they are always written to the current directory. If there are
any errors reading or writing the files, FLUID will print the error and exit with a non-zero code. You can
use the following lines in a makefile to automate the creation of the source and header files:

my_panels.h my_panels.cxx: my_panels.fl
fluid -c my_panels.fl

Most versions of make support rules that cause . £1 files to be compiled:

.SUFFIXES: .fl .cxx .h
f1l.h fl.cxx:
fluid -c s$<

11.5 A Short Tutorial

FLUID is an amazingly powerful little program. However, this power comes at a price as it is not always
obvious how to accomplish seemingly simple tasks with it. This tutorial will show you how to generate a
complete user interface class with FLUID that is used for the CubeView program provided with FLTK.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

94 Programming with FLUID

(=[]

I
| Ll
|

|||]

Figure 11.2: CubeView demo

The window is of class CubeViewUI, and is completely generated by FLUID, including class member
functions. The central display of the cube is a separate subclass of FI_GI_Window called CubeView. -
CubeViewUI manages CubeView using callbacks from the various sliders and rollers to manipulate the
viewing angle and zoom of CubeView.

At the completion of this tutorial you will (hopefully) understand how to:

1. Use FLUID to create a complete user interface class, including constructor and any member functions
necessary.

2. Use FLUID to set callbacks member functions of a custom widget classes.

3. Subclass an FI_GI_Window to suit your purposes.

11.5.1 The CubeView Class

The CubeView class is a subclass of FI_Gl_Window. It has methods for setting the zoom, the x and y pan,
and the rotation angle about the x and y axes.

You can safely skip this section as long as you realize the CubeView is a sublass of FI_Gl_Window and
will respond to calls from CubeViewUI, generated by FLUID.

The CubeView Class Definition

Here is the CubeView class definition, as given by its header file "test/CubeView.h":

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

11.5 A Short Tutorial 95

class CubeView : public F1_Gl_Window {
public:
CubeView (int x,int y,int w,int h,const char %1=0);
// this value determines the scaling factor used to draw the cube.
double size;
/* Set the rotation about the vertical (y) axis.

This function is called by the horizontal roller in CubeViewUI
and the initialize button in CubeViewUI.

*/
void v_angle (float angle) {vAng=angle;};
// Return the rotation about the vertical (y) axis.

float v_angle() {return vAng;};
/* Set the rotation about the horizontal (x) axis.

This function is called by the vertical roller in CubeViewUI
and the
initialize button in CubeViewUI.
*/
void h_angle (float angle) {hAng=angle;};
// the rotation about the horizontal (x) axis.
float h_angle() {return hAng;};
/* Sets the x shift of the cube view camera.

This function is called by the slider in CubeViewUI and the
initialize button in CubeViewUI.
*/
void panx (float x) {xshift=x;};
/* Sets the y shift of the cube view camera.

This function is called by the slider in CubeViewUI and the
initialize button in CubeViewUI.
*/
void pany (float y) {yshift=y;};
/* The widget class draw() override.
The draw () function initialize Gl for another round of
drawing then calls specialized functions for drawing each
of the entities displayed in the cube view.
*/
void draw();

private:
/* Draw the cube boundaries
Draw the faces of the cube using the boxv[] vertices, using
GL_LINE_LOOP for the faces. The color is #defined by
CUBECOLOR.
*/

void drawCube () ;
float vAng,hAng; float xshift,yshift;
float boxv0([3];float boxvl[3]; float boxv2[3];float boxv3[3];

float boxv4[3];float boxv5[3]; float boxv6[3];float boxv7[3];
bi

The CubeView Class Implementation

Here is the CubeView implementation. It is very similar to the "cube" demo included with FLTK.

#include "CubeView.h"
#include <math.h>

CubeView: :CubeView (int x,int y,int w,int h,const char =x1)
F1_Gl_Window(x,y,w,h,1)

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

96

Programming with FLUID

VvAng =

01
1]
2]
0]
1]
2]

boxv0
boxvl
boxv2
boxv4
boxvb
boxvé

bi

// The color used for the edges of the bounding

0.0;

/* The cube definition.
centered on the origin.x/
= -0.

= 0.5;

hAng=0.0;

size=10.0;
These are

the vertices of a unit cube

5; boxv0[1l] = -0.5; boxv0[2
-0.5; boxvl[2] = -0.5; boxv2[0
-0.5; boxv3[0] = -0.5; boxv3[1l
-0.5; boxv4[l] = -0.5; boxv4[2
-0.5; boxv5[2] = 0.5; boxv6[0]

boxv7[0] = -0.5; boxv7[1]

#define CUBECOLOR 255,255,255,255

void CubeView:

:drawCube ()

/* Draw a colored cube */
#define ALPHA 0.5

glShadeModel (GL_FLAT) ;

glBegin (GL_QUADS) ;

glColor4f (0.0,

0.0,

glVertex3fv (boxv0) ;
glVertex3fv (boxvl) ;
glVertex3fv (boxv2) ;
glVertex3fv (boxv3);

glColor4f (1.0,

1.0,

glVertex3fv (boxv0) ;
glVertex3fv (boxv4) ;
glVertex3fv (boxv5) ;
glVertex3fv (boxvl) ;

glColor4f (0.0,

1.0,

glVertex3fv (boxv2);
glVertex3fv (boxv6) ;
glVertex3fv (boxv7);
glVertex3fv (boxv3) ;

glColor4£f (1.0,

0.0,

glVertex3fv (boxv4) ;
glVertex3fv (boxv));
glVertex3fv (boxv6) ;
glVertex3fv (boxv7) ;

glColor4f (1.0,

0.0,

glVertex3fv (boxv0) ;
glVertex3fv (boxv3) ;
glVertex3fv (boxv7);
glVertex3fv (boxv4) ;

glColor4f (0.0,

1.0,

glVertex3fv (boxvl) ;
glVertex3fv (boxv5) ;
glVertex3fv (boxv6) ;
glVertex3fv (boxv2) ;

glEnd () ;

glColor3f (1.0,

glBegin (GL_LINES) ;
glVertex3fv (boxv0) ;
glVertex3fv (boxvl) ;

glVertex3fv (boxvl) ;
glVertex3fv (boxv2);

glvertex3fv (boxv2);

1.0, 1.

{

ALPHA) ;

ALPHA) ;

ALPHA) ;

ALPHA) ;

ALPHA) ;

ALPHA) ;

]
]
]
]

= -0.5; boxvl[0] = 0.5;

= 0.5; boxv2[1l] = 0.5;

= 0.5; boxv3[2] = -0.5;

= 0.5; boxv5[0] = 0.5;

= 0.5; boxve[l] = 0.5;

= 0.5; boxv7[2] = 0.5;
cube.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

11.5 A Short Tutorial 97

glvertex3fv (boxv3);

glVertex3fv (boxv3);
glVertex3fv (boxv0) ;

glVertex3fv (boxv4) ;
glVertex3fv (boxv5) ;

glVertex3fv (boxv5) ;
glVertex3fv (boxvo6) ;

glVertex3fv (boxvo6) ;
glVertex3fv (boxv7);

glVertex3fv (boxv7);
glVertex3fv (boxv4) ;

glVertex3fv (boxv0) ;
glVertex3fv (boxv4) ;

glvVertex3fv (boxvl);
glVertex3fv (boxv5);

glVertex3fv (boxv2) ;
glVertex3fv (boxv6) ;

glVertex3fv (boxv3) ;
glVertex3fv (boxv7);
glEnd () ;
}; //drawCube

void CubeView: :draw () {
if (!'valid()) {
glLoadIdentity(); glViewport (0,0,w(),h());
glOrtho(-10,10,-10,10,-20000,10000); glEnable (GL_BLEND) ;
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) ;

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;
glPushMatrix (); glTranslatef (xshift, yshift, 0);

glRotatef (hAng,0,1,0); glRotatef (vAng,1,0,0);

glScalef (float (size), float (size), float (size)); drawCube();
glPopMatrix () ;

11.5.2 The CubeViewUIl Class

We will completely construct a window to display and control the CubeView defined in the previous section
using FLUID.

Defining the CubeViewUI Class

Once you have started FLUID, the first step in defining a class is to create a new class within FLUID using
the New->Code->Class menu item. Name the class "CubeViewUI" and leave the subclass blank. We do
not need any inheritance for this window. You should see the new class declaration in the FLUID browser
window.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

98 Programming with FLUID

= fluid

File Edit MNew Help
—class Userinterface

¥ 4 class x|

[public |

Mame:
CubeviewlI|

subclass of (text between : and {

ak. " Cancel

Figure 11.3: FLUID file for CubeView

Adding the Class Constructor

Click on the CubeViewUI class in the FLUID window and add a new method by selecting New->Code-
>Function/Method. The name of the function will also be CubeViewUI. FLUID will understands that
this will be the constructor for the class and will generate the appropriate code. Make sure you declare the
constructor public.

Then add a window to the CubeViewUI class. Highlight the name of the constructor in the FLUID browser
window and click on New->Group->Window. In a similar manner add the following to the CubeViewUI
constructor:

* A horizontal roller named hrot
* A vertical roller named vrot
¢ A horizontal slider named xpan
¢ A vertical slider named ypan

¢ A horizontal value slider named zoom

None of these additions need be public. And they shouldn’t be unless you plan to expose them as part of
the interface for CubeViewUI.

When you are finished you should have something like this:

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

11.5 A Short Tutorial 99

beVie 34 CubeView IBIEE]
File Edit Mew Help Zoom [100 —1——

wclass CubeViewUl
wCubeViewlI()
wWindow mainWindow
wGroup

wGroup VChange m

Foller vrot

Slider ypan
wGroup HChange

Slider xpan
,Z?gﬁ; hh;(;tinwew 1=l This is the cube_view

Box cframe
Cubeview cube
“alue Slider zoom

wshow(int arge, char **argw)
mainWindow->show(argc, argv);| =|

Figure 11.4: FLUID window containing CubeView demo

We will talk about the show () method that is highlighted shortly.

Adding the CubeView Widget

What we have is nice, but does little to show our cube. We have already defined the CubeView class and
we would like to show it within the CubeViewUI.

The CubeView class inherits the FI_Gl_Window class, which is created in the same way as a Fl_Box
widget. Use New->Other->Box to add a square box to the main window. This will be no ordinary box,
however.

The Box properties window will appear. The key to letting CubeViewUI display CubeView is to enter
CubeView in the Class: text entry box. This tells FLUID that it is not an F1_Box, but a similar widget with
the same constructor.

In the Extra Code: field enter #include "CubeView.h"

This #include is important, as we have just included CubeView as a member of CubeViewUI, so any
public CubeView methods are now available to CubeViewUI.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

100 Programming with FLUID

[=[ol[]

GUI | Style ||

Class: [CubeView

Mame: |[cube ¥ public
Extra Code: | #include "CubeView.h"
|
|
|
Callback:

User Data: | When: |Felease B
Type: [void* I Mo Change

No_OuerIay| Revert | 0138 /-r‘ Cancel |

Figure 11.5: CubeView methods

Defining the Callbacks

Each of the widgets we defined before adding CubeView can have callbacks that call CubeView methods.
You can call an external function or put in a short amount of code in the Callback field of the widget panel.
For example, the callback for the ypan slider is:

cube->pany (((F1_Slider =x)o)->value());
cube->redraw () ;

We call cube->redraw () after changing the value to update the CubeView window. CubeView could
easily be modified to do this, but it is nice to keep this exposed in the case where you may want to do more
than one view change only redrawing once saves a lot of time.

There is no reason no wait until after you have added CubeView to enter these callbacks. FLUID assumes
you are smart enough not to refer to members or functions that don’t exist.

Adding a Class Method

You can add class methods within FLUID that have nothing to do with the GUI. An an example add a show
function so that CubeViewUI can actually appear on the screen.

Make sure the top level CubeViewUI is selected and select New->Code->Function/Method. Just use the
name show (). We don’t need a return value here, and since we will not be adding any widgets to this
method FLUID will assign it a return type of void.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

11.6 FLUID Reference 101

=w function'method

" public | [C declaration

Marelargs): (blank far main)
cshowiint argce, char *#*argv)

Return Type: (blank to return outermost widget)

aE, Cancel

Figure 11.6: CubeView constructor

Once the new method has been added, highlight its name and select New->Code->Code. Enter the
method’s code in the code window.

11.5.3 Adding Constructor Initialization Code

If you need to add code to initialize class, for example setting initial values of the horizontal and vertical
angles in the CubeView, you can simply highlight the Constructor and select New->Code->Code. Add
any required code.

11.5.4 Generating the Code

Now that we have completely defined the CubeViewUI, we have to generate the code. There is one last
trick to ensure this all works. Open the preferences dialog from Edit->Preferences.

At the bottom of the preferences dialog box is the key: '"'Include Header from Code'. Select that option
and set your desired file extensions and you are in business. You can include the CubeViewULh (or
whatever extension you prefer) as you would any other C++ class.

11.6 FLUID Reference

The following sections describe each of the windows in FLUID.

11.6.1 The Widget Browser

The main window shows a menu bar and a scrolling browser of all the defined widgets. The name of the
. £1 file being edited is shown in the window title.

The widgets are stored in a hierarchy. You can open and close a level by clicking the "triangle" at the left
of a widget. The leftmost widgets are the parents, and all the widgets listed below them are their children.
Parents don’t have to have any children.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

102 Programming with FLUID

The top level of the hierarchy is composed of functions and classes. Each of these will produce a single
C++ public function or class in the output . cxx file. Calling the function or instantiating the class will
create all of the child widgets.

The second level of the hierarchy contains the windows. Each of these produces an instance of class FI_-
Window.

Below that are either widgets (subclasses of FI_Widget) or groups of widgets (including other groups).
Plain groups are for layout, navigation, and resize purposes. Tab groups provide the well-known file-card
tab interface.

Widgets are shown in the browser by either their name (such as "main_panel” in the example), or by their
type and label (such as "Button "the green"").

You select widgets by clicking on their names, which highlights them (you can also select widgets from
any displayed window). You can select many widgets by dragging the mouse across them, or by using
Shift+Click to toggle them on and off. To select no widgets, click in the blank area under the last widget.
Note that hidden children may be selected even when there is no visual indication of this.

You open widgets by double-clicking on them, or (to open several widgets you have picked) by typing the
F1 key. A control panel will appear so you can change the widget(s).

11.6.2 Menu ltems

The menu bar at the top is duplicated as a pop-up menu on any displayed window. The shortcuts for all the
menu items work in any window. The menu items are:

File/Open... (Ctrl+o)

Discards the current editing session and reads in a different . £1 file. You are asked for confirmation
if you have changed the current file.

FLUID can also read . £d files produced by the Forms and XForms "fdesign" programs. It is best to
File/Merge them instead of opening them. FLUID does not understand everything in a . £d file, and
will print a warning message on the controlling terminal for all data it does not understand. You will
probably need to edit the resulting setup to fix these errors. Be careful not to save the file without
changing the name, as FLUID will write over the . £d file with its own format, which fdesign cannot
read!

File/Insert... (Ctrl+i)

Inserts the contents of another . £1 file, without changing the name of the current . £1 file. All the
functions (even if they have the same names as the current ones) are added, and you will have to use
cut/paste to put the widgets where you want.

File/Save (Ctrl+s)

Writes the current data to the . £1 file. If the file is unnamed then FLUID will ask for a filename.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

11.6 FLUID Reference 103

File/Save As... (Ctrl+Shift+S)

Asks for a new filename and saves the file.

File/Write Code (Ctrl+Shift+C)

"Compiles" the data into a . cxx and . h file. These are exactly the same as the files you get when you
run FLUID with the —c switch.

The output file names are the same as the . £1 file, with the leading directory and trailing ".f" stripped,
and ".h" or ".cxx" appended.

File/Write Strings (Ctrl+Shift+W)

Writes a message file for all of the text labels defined in the current file.

The output file name is the same as the . £1 file, with the leading directory and trailing ".fl" stripped,
and ".txt", ".po", or ".msg" appended depending on the Internationalization Mode.

File/Quit (Ctrl+q)

Exits FLUID. You are asked for confirmation if you have changed the current file.

Edit/Undo (Ctrl+z)

This isn’t implemented yet. You should do save often so you can recover from any mistakes you make.

Edit/Cut (Ctrl+x)

Deletes the selected widgets and all of their children. These are saved to a "clipboard" file and can be
pasted back into any FLUID window.

Edit/Copy (Ctrl+c)

Copies the selected widgets and all of their children to the "clipboard" file.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

104 Programming with FLUID

Edit/Paste (Ctrl+c)

Pastes the widgets from the clipboard file.

If the widget is a window, it is added to whatever function is selected, or contained in the current
selection.

If the widget is a normal widget, it is added to whatever window or group is selected. If none is, it is
added to the window or group that is the parent of the current selection.

To avoid confusion, it is best to select exactly one widget before doing a paste.

Cut/paste is the only way to change the parent of a widget.

Edit/Select All (Ctrl+a)

Selects all widgets in the same group as the current selection.

If they are all selected already then this selects all widgets in that group’s parent. Repeatedly typing
Ctrl+a will select larger and larger groups of widgets until everything is selected.

Edit/Open... (F1 or double click)

Displays the current widget in the attributes panel. If the widget is a window and it is not visible then
the window is shown instead.

Edit/Sort

Sorts the selected widgets into left to right, top to bottom order. You need to do this to make navigation
keys in FLTK work correctly. You may then fine-tune the sorting with "Earlier" and "Later". This does
not affect the positions of windows or functions.

Edit/Earlier (F2)

Moves all of the selected widgets one earlier in order among the children of their parent (if possible).
This will affect navigation order, and if the widgets overlap it will affect how they draw, as the later
widget is drawn on top of the earlier one. You can also use this to reorder functions, classes, and
windows within functions.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

11.6 FLUID Reference 105

Edit/Later (F3)

Moves all of the selected widgets one later in order among the children of their parent (if possible).

Edit/Group (F7)

Creates a new F1_Group and make all the currently selected widgets children of it.

Edit/Ungroup (F8)

Deletes the parent group if all the children of a group are selected.

Edit/Overlays on/off (Ctrl+Shift+O)

Toggles the display of the red overlays off, without changing the selection. This makes it easier to see
box borders and how the layout looks. The overlays will be forced back on if you change the selection.

Edit/Project Settings... (Ctrl+p)

Displays the project settings panel. The output filenames control the extensions or names of the files
the are generated by FLUID. If you check the "Include .h from .cxx" button the code file will include
the header file automatically.

The internationalization options are described later in this chapter.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

106

Programming with FLUID

= Preferences

Eric: Internationalization:

Horizontal: |§ Use: |Mone Rd

‘u“ertical:|5
Snap:|3

Output File Mames:

Uze "name ext" to set name or just "ext"” to set only extension.

Header File: .h

Code File:| . cxx

[Include Header from Code |

Close

Figure 11.7: FLUID Preferences Window

Edit/GUI Settings... (Shift+Ctrl+p)

Displays the GUI settings panel. This panel is used to control the user interface settings.

New/Code/Function

Creates a new C function. You will be asked for a name for the function. This name should be a legal
C++ function template, without the return type. You can pass arguments which can be referred to by
code you type into the individual widgets.

If the function contains any unnamed windows, it will be declared as returning a FI_Window pointer.
The unnamed window will be returned from it (more than one unnamed window is useless). If the
function contains only named windows, it will be declared as returning nothing (void).

It is possible to make the . cxx output be a self-contained program that can be compiled and executed.
This is done by deleting the function name so main (argc, argv) is used. The function will call
show () on all the windows it creates and then call F1: : run (). This can also be used to test resize
behavior or other parts of the user interface.

You can change the function name by double-clicking on the function.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

11.6 FLUID Reference 107

New/Window

Creates a new FI_Window widget. The window is added to the currently selected function, or to the
function containing the currently selected item. The window will appear, sized to 100x100. You can
resize it to whatever size you require.

The widget panel will also appear and is described later in this chapter.

New/...

All other items on the New menu are subclasses of FI_Widget. Creating them will add them to the
currently selected group or window, or the group or window containing the currently selected widget.
The initial dimensions and position are chosen by copying the current widget, if possible.

When you create the widget you will get the widget’s control panel, which is described later in this
chapter.

Layout/Align/...

Align all selected widgets to the first widget in the selection.

Layout/Space Evenly/...

Space all selected widgets evenly inside the selected space. Widgets will be sorted from first to last.

Layout/Make Same Size/...

Make all selected widgets the same size as the first selected widget.

Layout/Center in Group/...

Center all selected widgets relative to their parent widget

Layout/Grid... (Ctrl+g)

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

108 Programming with FLUID

Displays the grid settings panel. This panel controls the grid that all widgets snap to when you move
and resize them, and for the "snap" which is how far a widget has to be dragged from its original
position to actually change.

Shell/Execute Command... (Alt+x)

Displays the shell command panel. The shell command is commonly used to run a *make’ script to
compile the FLTK output.

Shell/Execute Again (Alt+g)

Run the shell command again.

Help/About FLUID

Pops up a panel showing the version of FLUID.

Help/On FLUID

Shows this chapter of the manual.

Help/Manual

Shows the contents page of the manual

11.6.3 The Widget Panel

When you double-click on a widget or a set of widgets you will get the "widget attribute panel".

When you change attributes using this panel, the changes are reflected immediately in the window. It is
useful to hit the "no overlay" button (or type Ctrl+Shift+O) to hide the red overlay so you can see the
widgets more accurately, especially when setting the box type.

If you have several widgets selected, they may have different values for the fields. In this case the value for
one of the widgets is shown. But if you change this value, all of the selected widgets are changed to the
new value.

Hitting "OK" makes the changes permanent. Selecting a different widget also makes the changes perma-
nent. FLUID checks for simple syntax errors such as mismatched parenthesis in any code before saving
any text.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

11.7 GUI Attributes

109

"Revert" or "Cancel" put everything back to when you last brought up the panel or hit OK. However in the
current version of FLUID, changes to "visible" attributes (such as the color, label, box) are not undone by
revert or cancel. Changes to code like the callbacks are undone, however.

Style | e+ |

Label: | Cancel

[MNORMAL Léw]

D= ES)

Image: | Browse...
Inactive: | Browse...
Alignment: dio | wep | an &80
: : ‘Width: Height:
Position: [325 [235 [80 |25
Size: Minimum: Maximum: Step: ‘Walue:
Values: 0 1] 1 0 0
Shorcut: |

Aftributes: ® visible |8 sctive |7 Resizable | hotspot |
Tooltip: |
Mo Ouerlay | Rewvert | QK - ‘ Cancel |

Figure 11.8: The FLUID widget GUI attributes

11.7 GUI Attributes

Label (text field)

String to print next to or inside the button. You can put newlines into the string to make multiple lines.

The easiest way is by typing Ctrl+j.

Symbols can be added to the label using the at sign ("@").

Label (pull down menu)

How to draw the label. Normal, shadowed, engraved, and embossed change the appearance of the text.

Image

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

110 Programming with FLUID

The active image for the widget. Click on the Browse... button to pick an image file using the file
chooser.

Inactive

The inactive image for the widget. Click on the Browse... button to pick an image file using the file
chooser.

Alignment (buttons)

Where to draw the label. The arrows put it on that side of the widget, you can combine the to put it in
the corner. The "box" button puts the label inside the widget, rather than outside.

The clip button clips the label to the widget box, the wrap button wraps any text in the label, and the
text image button puts the text over the image instead of under the image.

Position (text fields)

The position fields show the current position and size of the widget box. Enter new values to move
and/or resize a widget.

Values (text fields)

The values and limits of the current widget. Depending on the type of widget, some or all of these
fields may be inactive.

Shortcut

The shortcut key to activate the widget. Click on the shortcut button and press any key sequence to set
the shortcut.

Attributes (buttons)

The Visible button controls whether the widget is visible (on) or hidden (off) initially. Don’t change
this for windows or for the immediate children of a Tabs group.

The Active button controls whether the widget is activated (on) or deactivated (off) initially. Most
widgets appear greyed out when deactivated.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

11.7 GUI Attributes 111

The Resizable button controls whether the window is resizeable. In addition all the size changes of
a window or group will go "into" the resizable child. If you have a large data display surrounded by
buttons, you probably want that data area to be resizable. You can get more complex behavior by
making invisible boxes the resizable widget, or by using hierarchies of groups. Unfortunately the only
way to test it is to compile the program. Resizing the FLUID window is not the same as what will
happen in the user program.

The Hotspot button causes the parent window to be positioned with that widget centered on the mouse.
This position is determined when the FLUID function is called, so you should call it immediately
before showing the window. If you want the window to hide and then reappear at a new position, you
should have your program set the hotspot itself just before show ().

The Border button turns the window manager border on or off. On most window managers you will
have to close the window and reopen it to see the effect.

X Class (text field)

The string typed into here is passed to the X window manager as the class. This can change the icon or
window decorations. On most (all?) window managers you will have to close the window and reopen
it to see the effect.

[=[a][x]

Label Font: [Helvetica >4 Label Calor
Box |UP B ﬂ Calor
Down Box: [MNO BOX ¥] selectrolor

Mo Qwerlay Revert QK o Cancel

Figure 11.9: The FLUID widget Style attributes

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

112 Programming with FLUID

11.7.1 Style Attributes

Label Font (pulldown menu)

Font to draw the label in. Ignored by symbols, bitmaps, and pixmaps. Your program can change the
actual font used by these "slots" in case you want some font other than the 16 provided.

Label Size (pulldown menu)

Pixel size (height) for the font to draw the label in. Ignored by symbols, bitmaps, and pixmaps. To see
the result without dismissing the panel, type the new number and then Tab.

Label Color (button)

Color to draw the label. Ignored by pixmaps (bitmaps, however, do use this color as the foreground
color).

Box (pulldown menu)

The boxtype to draw as a background for the widget.

Many widgets will work, and draw faster, with a "frame" instead of a "box". A frame does not draw
the colored interior, leaving whatever was already there visible. Be careful, as FLUID may draw this
ok but the real program may leave unwanted stuff inside the widget.

If a window is filled with child widgets, you can speed up redrawing by changing the window’s box
type to "NO_BOX". FLUID will display a checkerboard for any areas that are not colored in by boxes.
Note that this checkerboard is not drawn by the resulting program. Instead random garbage will be
displayed.

Down Box (pulldown menu)

The boxtype to draw when a button is pressed or for some parts of other widgets like scrollbars and
valuators.

Color (button)

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

11.7 GUI Attributes 113

The color to draw the box with.

Select Color (button)

Some widgets will use this color for certain parts. FLUID does not always show the result of this: this
is the color buttons draw in when pushed down, and the color of input fields when they have the focus.

Text Font, Size, and Color

Some widgets display text, such as input fields, pull-down menus, and browsers.

Class: | [Mormal |
MName: | 1 public
Extra Code: |

Callback: [cancel cb

User Data: | When: |Felease hd
Type: [void* I No Change

NU_OuerIay| Revert | 0118 /-r‘ Cancel |

Figure 11.10: The FLUID widget C++ attributes

11.7.2 C++ Attributes

Class

This is how you use your own subclasses of FI_Widget. Whatever identifier you type in here will be
the class that is instantiated.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

114 Programming with FLUID

In addition, no # include header file is put in the . h file. You must provide a #include line as the
first line of the "Extra Code" which declares your subclass.

The class must be similar to the class you are spoofing. It does not have to be a subclass. It is sometimes
useful to change this to another FLTK class. Currently the only way to get a double-buffered window
is to change this field for the window to "F1_Double_Window" and to add

#include <FL/F1_Double_Window.h>

to the extra code.

Type (upper-right pulldown menu)

Some classes have subtypes that modify their appearance or behavior. You pick the subtype off of this
menu.

Name (text field)

Name of a variable to declare, and to store a pointer to this widget into. This variable will be of type
"<class>x". If the name is blank then no variable is created.

You can name several widgets with "name[0]", "name[1]", "name[2]", etc. This will cause FLUID to
declare an array of pointers. The array is big enough that the highest number found can be stored. All
widgets that in the array must be the same type.

Public (button)

Controls whether the widget is publicly accessible. When embedding widgets in a C++ class, this
controls whether the widget is public or private in the class. Otherwise is controls whether the
widget is declared static or global (extern).

Extra Code (text fields)

These four fields let you type in literal lines of code to dump into the .h or . cxx files.

If the text starts with a # or the word extern then FLUID thinks this is an "include" line, and it is
written to the . h file. If the same include line occurs several times then only one copy is written.

All other lines are "code" lines. The current widget is pointed to by the local variable o. The window
being constructed is pointed to by the local variable w. You can also access any arguments passed to
the function here, and any named widgets that are before this one.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

11.7 GUI Attributes 115

FLUID will check for matching parenthesis, braces, and quotes, but does not do much other error
checking. Be careful here, as it may be hard to figure out what widget is producing an error in the
compiler. If you need more than four lines you probably should call a function in your own .cxx
code.

Callback (text field)

This can either be the name of a function, or a small snippet of code. If you enter anything other than
letters, numbers, and the underscore then FLUID treats it as code.

A name refers to a function in your own code. It must be declared as void name (<class>%*, v—
oildsx).

A code snippet is inserted into a static function in the . cxx output file. The function prototype is
void name (class %o, void *v) so that you can refer to the widget as o and the user_d-
ata () as v. FLUID will check for matching parenthesis, braces, and quotes, but does not do much
other error checking. Be careful here, as it may be hard to figure out what widget is producing an error
in the compiler.

If the callback is blank then no callback is set.

User Data (text field)

This is a value for the user_data () of the widget. If blank the default value of zero is used. This
can be any piece of C code that can be cast to a void pointer.

Type (text field)

The voids in the callback function prototypes is replaced with this. You may want to use 1ong for
old XForms code. Be warned that anything other than voidsx is not guaranteed to work! However on
most architectures other pointer types are ok, and 1ong is usually ok, too.

When (pulldown menu)

When to do the callback. This can be Never, Changed, Release, or Enter Key. The value of Enter
Key is only useful for text input fields.

There are other rare but useful values for the when () field that are not in the menu. You should use
the extra code fields to put these values in.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

116 Programming with FLUID

No Change (button)

The No Change button means the callback is done on the matching event even if the data is not
changed.

11.8 Selecting and Moving Widgets

Double-clicking a window name in the browser will display it, if not displayed yet. From this display you
can select widgets, sets of widgets, and move or resize them. To close a window either double-click it or
type ESC.

To select a widget, click it. To select several widgets drag a rectangle around them. Holding down shift
will toggle the selection of the widgets instead.

You cannot pick hidden widgets. You also cannot choose some widgets if they are completely overlapped
by later widgets. Use the browser to select these widgets.

The selected widgets are shown with a red "overlay" line around them. You can move the widgets by
dragging this box. Or you can resize them by dragging the outer edges and corners. Hold down the Alt key
while dragging the mouse to defeat the snap-to-grid effect for fine positioning.

If there is a tab box displayed you can change which child is visible by clicking on the file tabs. The child
you pick is selected.

The arrow, tab, and shift+tab keys "navigate" the selection. Left, right, tab, or shift+tab move to the next
or previous widgets in the hierarchy. Hit the right arrow enough and you will select every widget in the
window. Up/down widgets move to the previous/next widgets that overlap horizontally. If the navigation
does not seem to work you probably need to "Sort" the widgets. This is important if you have input fields,
as FLTK uses the same rules when using arrow keys to move between input fields.

To "open" a widget, double click it. To open several widgets select them and then type F1 or pick
"Edit/Open" off the pop-up menu.

Type Ctrl+o to temporarily toggle the overlay off without changing the selection, so you can see the widget
borders.

You can resize the window by using the window manager border controls. FLTK will attempt to round the
window size to the nearest multiple of the grid size and makes it big enough to contain all the widgets (it
does this using illegal X methods, so it is possible it will barf with some window managers!). Notice that
the actual window in your program may not be resizable, and if it is, the effect on child widgets may be
different.

The panel for the window (which you get by double-clicking it) is almost identical to the panel for any
other FI_Widget. There are three extra items:

11.9 Image Labels

The contents of the image files in the Image and Inactive text fields are written to the . cxx file. If many
widgets share the same image then only one copy is written. Since the image data is embedded in the
generated source code, you need only distribute the C++ code and not the image files themselves.

However, the filenames are stored in the . £1 file so you will need the image files as well to read the . £1
file. Filenames are relative to the location of the . £1 file and not necessarily the current directory. We
recommend you either put the images in the same directory as the . £1 file, or use absolute path names.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

11.9 Image Labels 117

Notes for All Image Types

FLUID runs using the default visual of your X server. This may be § bits, which will give you dithered
images. You may get better results in your actual program by adding the code "Fl::visual(FL_RGB)"
to your code right before the first window is displayed.

All widgets with the same image on them share the same code and source X pixmap. Thus once you
have put an image on a widget, it is nearly free to put the same image on many other widgets.

If you edit an image at the same time you are using it in FLUID, the only way to convince FLUID to
read the image file again is to remove the image from all widgets that are using it or re-load the . f1
file.

Don’t rely on how FLTK crops images that are outside the widget, as this may change in future
versions! The cropping of inside labels will probably be unchanged.

To more accurately place images, make a new "box" widget and put the image in that as the label.

XBM (X Bitmap) Files

FLUID reads X bitmap files which use C source code to define a bitmap. Sometimes they are stored
with the ".h" or ".bm" extension rather than the standard ".xbm" extension.

FLUID writes code to construct an F1_Bitmap image and use it to label the widget. The *1’ bits in the
bitmap are drawn using the label color of the widget. You can change this color in the FLUID widget
attributes panel. The *0’ bits are transparent.

The program "bitmap" on the X distribution does an adequate job of editing bitmaps.

XPM (X Pixmap) Files

FLUID reads X pixmap files as used by the 1 ibxpm library. These files use C source code to define a
pixmap. The filenames usually have the ".xpm" extension.

FLUID writes code to construct an FI_Pixmap image and use it to label the widget. The label color
of the widget is ignored, even for 2-color images that could be a bitmap. XPM files can mark a single
color as being transparent, and FLTK uses this information to generate a transparency mask for the
image.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

118 Programming with FLUID

We have not found any good editors for small iconic pictures. For pixmaps we have used XPaint and
the KDE icon editor.

BMP Files

FLUID reads Windows BMP image files which are often used in WIN32 applications for icons. FL-
UID converts BMP files into (modified) XPM format and uses a FI_BMP_Image image to label the
widget. Transparency is handled the same as for XPM files. All image data is uncompressed when
written to the source file, so the code may be much bigger than the . bmp file.

GIF Files

FLUID reads GIF image files which are often used in HTML documents to make icons. FLUID
converts GIF files into (modified) XPM format and uses a FI_GIF_Image image to label the widget.
Transparency is handled the same as for XPM files. All image data is uncompressed when written to
the source file, so the code may be much bigger than the . gi £ file. Only the first image of an animated
GIF file is used.

JPEG Files

If FLTK is compiled with JPEG support, FLUID can read JPEG image files which are often used for
digital photos. FLUID uses a FI_JPEG_Image image to label the widget, and writes uncompressed
RGB or grayscale data to the source file.

PNG (Portable Network Graphics) Files

If FLTK is compiled with PNG support, FLUID can read PNG image files which are often used in H-
TML documents. FLUID uses a FI_PNG_Image image to label the widget, and writes uncompressed
RGB or grayscale data to the source file. PNG images can provide a full alpha channel for partial
transparency, and FLTK supports this as best as possible on each platform.

11.10 Internationalization with FLUID

FLUID supports internationalization (I18N for short) of label strings used by widgets. The preferences
window (Ctr1+p) provides access to the I18N options.

11.10.1 118N Methods

FLUID supports three methods of I18N: use none, use GNU gettext, and use POSIX catgets. The "use
none" method is the default and just passes the label strings as-is to the widget constructors.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

http://home.worldonline.dk/~torsten/xpaint/index.html

11.10 Internationalization with FLUID 119

The "GNU gettext" method uses GNU gettext (or a similar text-based 118N library) to retrieve a localized
string before calling the widget constructor.

The "POSIX catgets" method uses the POSIX catgets function to retrieve a numbered message from a
message catalog before calling the widget constructor.

11.10.2 Using GNU gettext for 118N

FLUID’s code support for GNU gettext is limited to calling a function or macro to retrieve the localized
label; you still need to call setlocale () and textdomain () orbindtextdomain () to select the
appropriate language and message file.

To use GNU gettext for I18N, open the preferences window and choose "GNU gettext" from the Use:
chooser. Two new input fields will then appear to control the include file and function/macro name to use
when retrieving the localized label strings.

=+ Preferences

Grid: Internationalization:
Horizontal: IE— WETR (ML gettext
Vertical|5 | | #include:| <libintl.h>
Snap:|3 | | Function:|gettext

Otput File Mames:

Usze "hame ext” to set hame or just "ext” to set anly extension.

Header File:| .h

Code File:| . cxx

[" Include Header from Code |

Close

Figure 11.11: Internationalization using GNU gettext

The #include field controls the header file to include for [18N; by default this is <libintl.h>, the standard
I18N file for GNU gettext.

The Function: field controls the function (or macro) that will retrieve the localized message; by default
the gettext function will be called.

11.10.3 Using POSIX catgets for I18N

FLUID’s code support for POSIX catgets allows you to use a global message file for all interfaces or a file
specific to each . £1 file; you still need to call setlocale () to select the appropriate language.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

120 Programming with FLUID

To use POSIX catgets for 18N, open the preferences window and choose "POSIX catgets" from the Use:
chooser. Three new input fields will then appear to control the include file, catalog file, and set number for
retrieving the localized label strings.

=» Preferences

Eric: Internationalization:

Pﬁnﬂzuntah|5

vertical:| 5 #include: <nl_types.h>

Shap:| 3 File: |

Set;|1

Cutput File Mames:

Usze "hame ext” to set name or just "ext” to set only extension.

Header File:| .h

Code File:| . cxx

[Include Header from Code |

Close

Figure 11.12: Internationalization using POSIX catgets

The #include field controls the header file to include for I18N; by default this is <nl_types.h>, the standard
I18N file for POSIX catgets.

The File: field controls the name of the catalog file variable to use when retrieving localized messages;
by default the file field is empty which forces a local (static) catalog file to be used for all of the windows
defined in your . £1 file.

The Set: field controls the set number in the catalog file. The default set is 1 and rarely needs to be changed.

11.11 Known limitations

Declaration Blocks can be used to temporarily block out already designed code using #1f 0 and #endif
type construction. This will effectively avoid compilation of blocks of code. However, static code and data
generated by this segment (menu items, images, include statements, etc.) will still be generated and likely
cause compile-time warnings.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

Chapter 12

Advanced FLTK

This chapter explains advanced programming and design topics that will help you to get the most out of
FLTK.

12.1 Multithreading

FLTK supports multithreaded applications using a locking mechanism based on "pthreads". We do not pro-
vide a threading interface as part of the library. However a simple example how threads can be implemented
for all supported platforms can be found in test /threads.h and test/threads.cxx.

To use the locking mechanism, FLTK must be compiled with ——enable-threads set during the
configure process. IDE-based versions of FLTK are automatically compiled with locking enabled
if possible.

Inmain (), call Fl::lock() before Fl::run() or Fl::wait() to start the runtime multithreading support for your
program. All callbacks and derived functions like handle () and draw () will now be properly locked:

int main() {
Fl::lock();
/* run thread x/
while (Fl::wait() > 0) {
if (Fl::thread_message()) {
/* process your data =/
}
}
}

You can now start as many threads as you like. From within a thread (other than the main thread) FLTK
calls must be wrapped with calls to Fl::lock() and Fl::unlock():

Fl::lock(); // avoid conflicting calls
. // your code here
Fl::unlock(); // allow other threads to access FLTK again

You can send messages from child threads to the main thread using Fl::awake(void* message):

void +*msg; // "msg" is a pointer to your message
Fl::awake(msg); // send "msg" to main thread

A message can be anything you like. The main thread can retrieve the message by calling Fl::thread_mes-
sage(). See example above.

122 Advanced FLTK

You can also tell the main thread to call a function for you as soon as possible by using Fl::awake(FI_Aw-
ake_Handler cb, void* userdata):

void do_something(void *userdata) {
// running with the main thread

}

// running in another thread
void +data; // "data" is a pointer to your user data
Fl::awake (do_something, data); // call something in main thread

FLTK supports multiple platforms, some of which allow only the main thread to handle system events and
open or close windows. The safe thing to do is to adhere to the following rules for threads on all operating
systems:

e Don’t show () or hide () anything that contains widgets derived from FI_Window, including di-
alogs, file choosers, subwindows or those using FI_GI_Window.

* Don’t call Fl::wait(), Fl::flush() or any related methods that will handle system messages

¢ Don’t start or cancel timers

* Don’t change window decorations or titles

e The make_current () method may or may not work well for regular windows, but should al-
ways work for a FI_Gl_Window to allow for high speed rendering on graphics cards with multiple
pipelines

See also: Fl::awake(void* message), Fl::lock(), Fl::thread_message(), Fl::unlock().

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

Chapter 13

Unicode and UTF-8 Support

This chapter explains how FLTK handles international text via Unicode and UTF-8.

Unicode support was only recently added to FLTK and is still incomplete. This chapter is Work in Progress,
reflecting the current state of Unicode support.

13.1 About Unicode, ISO 10646 and UTF-8

The summary of Unicode, ISO 10646 and UTF-8 given below is deliberately brief, and provides just
enough information for the rest of this chapter. For further information, please see:

e http://www.unicode.org

e http://www.iso.org

e http://en.wikipedia.org/wiki/Unicode

e http://www.cl.cam.ac.uk/~mgk25/unicode.html

e http://www.apps.ietf.org/rfc/rfc3629.html

The Unicode Standard

The Unicode Standard was originally developed by a consortium of mainly US computer manufacturers
and developers of multi-lingual software. It has now become a defacto standard for character encoding,
and is supported by most of the major computing companies in the world.

Before Unicode, many different systems, on different platforms, had been developed for encoding charac-
ters for different languages, but no single encoding could satisfy all languages. Unicode provides access to
over 100,000 characters used in all the major languages written today, and is independent of platform and
language.

Unicode also provides higher-level concepts needed for text processing and typographic publishing sys-
tems, such as algorithms for sorting and comparing text, composite character and text rendering, right-to-
left and bi-directional text handling.

There are currently no plans to add this extra functionality to FLTK.

http://www.unicode.org
http://www.iso.org
http://en.wikipedia.org/wiki/Unicode
http://www.cl.cam.ac.uk/~mgk25/unicode.html
http://www.apps.ietf.org/rfc/rfc3629.html

124 Unicode and UTF-8 Support

ISO 10646

The International Organisation for Standardization (ISO) had also been trying to develop a single unified
character set. Although both ISO and the Unicode Consortium continue to publish their own standards,
they have agreed to coordinate their work so that specific versions of the Unicode and ISO 10646 standards
are compatible with each other.

The international standard ISO 10646 defines the Universal Character Set (UCS) which contains the char-
acters required for almost all known languages. The standard also defines three different implementation
levels specifying how these characters can be combined.

There are currently no plans for handling the different implementation levels or the combining characters
in FLTK.

In UCS, characters have a unique numerical code and an official name, and are usually shown using "U+’
and the code in hexadecimal, e.g. U+0041 is the "Latin capital letter A". The UCS characters U+0000 to
U+007F correspond to US-ASCII, and U+0000 to U+00FF correspond to ISO 8859-1 (Latin1).

ISO 10646 was originally designed to handle a 31-bit character set from U+00000000 to U+7FFFFFFF,
but the current idea is that 21-bits will be sufficient for all future needs, giving characters up to U+10FFFF.
The complete character set is sub-divided into planes. Plane 0, also known as the Basic Multilingual
Plane (BMP), ranges from U+0000 to U+FFFD and consists of the most commonly used characters from
previous encoding standards. Other planes contain characters for specialist applications.

Todo

Do we need this info about planes?

The UCS also defines various methods of encoding characters as a sequence of bytes. UCS-2 encodes
Unicode characters into two bytes, which is wasteful if you are only dealing with ASCII or Latinl text, and
insufficient if you need characters above U+O00FFFF. UCS-4 uses four bytes, which lets it handle higher
characters, but this is even more wasteful for ASCII or Latin1.

UTF-8

The Unicode standard defines various UCS Transformation Formats. UTF-16 and UTF-32 are based on
units of two and four bytes. UCS characters requiring more than 16-bits are encoded using "surrogate
pairs" in UTF-16.

UTF-8 encodes all Unicode characters into variable length sequences of bytes. Unicode characters in the
7-bit ASCII range map to the same value and are represented as a single byte, making the transformation
to Unicode quick and easy.

All UCS characters above U+007F are encoded as a sequence of several bytes. The top bits of the first byte
are set to show the length of the byte sequence, and subsegent bytes are always in the range 0x80 to Ox8F.
This combination provides some level of synchronisation and error detection.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

13.2 Unicode in FLTK

125

Unicode range

Byte sequences

U+00000000

U+0000007F

OXXXXXXX

U+00000080

U+000007FF

110xxxxx 10xXXXXXX

U+00000800

U+0000FFFF

1110xxxx 10xXXXXX

10XXXXXX

U+00010000

U+001FFFFF

11110xxx 10xXxXXXX
10xXxXXXXX

10xXXXXXX

U+00200000

U+03FFFFFF

111110xx 10xXXXXXX
10xxxxxx 10XXXXXX

10xXxXXXXX

U+04000000

U+7FFFFFFEE

1111110x 10xxXxXxXX
10xxxxxx 10xXXXXX

10xXXXXXX
10xXXXXXX

Moving from ASCII encoding to Unicode will allow all new FLTK applications to be easily internation-
alized and used all over the world. By choosing UTF-8 encoding, FLTK remains largely source-code

compatible to previous iteration of the library.

13.2 Unicode in FLTK

Todo

Work through the code and this documentation to harmonize the [OksiD] and [fitk2] functions.

FLTK will be entirely converted to Unicode using UTF-8 encoding. If a different encoding is required by
the underlying operating system, FLTK will convert the string as needed.

It is important to note that the initial implementation of Unicode and UTF-8 in FLTK involves three im-

portant areas:

* provision of Unicode character tables and some simple related functions;

* conversion of charx variables and function parameters from single byte per character representation

to UTF-8 variable length sequences;

» modifications to the display font interface to accept general Unicode character or UCS code numbers

instead of just ASCII or Latinl characters.

The current implementation of Unicode / UTF-8 in FLTK will impose the following limitations:

* An implementation note in the [OksiD] code says that all functions are LIMITED to 24 bit Unicode
values, but also says that only 16 bits are really used under linux and win32. [Can we verify this?]

* The [fitk2] fl_utf8encode() and fl_utf8decode() functions are designed to handle Unicode characters
in the range U+000000 to U+10FFFF inclusive, which covers all UTF-16 characters, as specified in
RFC 3629. Note that the user must first convert UTF-16 surrogate pairs to UCS.

e FLTK will only handle single characters, so composed characters consisting of a base character and
floating accent characters will be treated as multiple characters;

* FLTK will only compare or sort strings on a byte by byte basis and not on a general Unicode character

basis;

* FLTK will not handle right-to-left or bi-directional text;

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

126 Unicode and UTF-8 Support

Todo

Verify 16/24 bit Unicode limit for different character sets? OksiD’s code appears limited to 16-bit
whereas the FLTK2 code appears to handle a wider set. What about illegal characters? See comments
in fl_utf8fromwc() and fl_utf8toUtf16().

13.3 lllegal Unicode and UTF-8 sequences

Three pre-processor variables are defined in the source code that determine how fl_utf8decode() handles
illegal UTF-8 sequences:

e if ERRORS_TO_CP1252 is set to 1 (the default), fl_utf8decode() will assume that a byte sequence
starting with a byte in the range 0x80 to 0x9f represents a Microsoft CP1252 character, and will
instead return the value of an equivalent UCS character. Otherwise, it will be processed as an illegal
byte value as described below.

* if STRICT_RFC3629 is set to 1 (not the default!) then UTF-8 sequences that correspond to illegal
UCS values are treated as errors. Illegal UCS values include those above U+10FFFF, or correspond-
ing to UTF-16 surrogate pairs. Illegal byte values are handled as described below.

» if ERRORS_TO_ISO8859_1 is set to 1 (the default), the illegal byte value is returned unchanged,
otherwise OxFFFD, the Unicode REPLACEMENT CHARACTER, is returned instead.

fl_utf8encode() is less strict, and only generates the UTF-8 sequence for OxFFFD, the Unicode REPLAC-
EMENT CHARACTER, if it is asked to encode a UCS value above U+10FFFF.

Many of the [fitk2] functions below use fl_utf8decode() and fl_utf8encode() in their own implementation,
and are therefore somewhat protected from bad UTF-8 sequences.

The [OksiD] fl_utf8len() function assumes that the byte it is passed is the first byte in a UTF-8 sequence,
and returns the length of the sequence. Trailing bytes in a UTF-8 sequence will return -1.

* WARNING: fl_utf8len() can not distinguish between single bytes representing Microsoft CP1252
characters 0x80-0x9f and those forming part of a valid UTF-8 sequence. You are strongly advised
not to use fl_utf8len() in your own code unless you know that the byte sequence contains only valid
UTF-8 sequences.

* WARNING: Some of the [OksiD] functions below use still use fl_utf8len() in their implementations.
These may need further validation.

Please see the individual function description for further details about error handling and return values.

13.4 FLTK Unicode and UTF-8 functions

This section currently provides a brief overview of the functions. For more details, consult the main text
for each function via its link.

int f1_utf8locale() FLTK2

f1_utf8locale() returns true if the "locale" seems to indicate that UTF-8 encoding is used.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

13.4 FLTK Unicode and UTF-8 functions 127

It is highly recommended that your change your system so this does return true!

int fl_utf8test(const char *src, unsigned len) FLTK?2

f1_utf8test() examines the first 1len bytes of src. It returns O if there are any illegal UTF-8
sequences; 1 if src contains plain ASCII or if 1len is zero; or 2, 3 or 4 to indicate the range of
Unicode characters found.

int fl_utf_nb_char(const unsigned char *buf, int len) OksiD

Returns the number of UTF-8 character in the first 1en bytes of buf.
int fl_unichar_to_utf8_size(FI_Unichar)
int fl_utf8bytes(unsigned ucs)

Returns the number of bytes needed to encode ucs in UTF-8.

int fl_utf8len(char ¢) OksiD

If ¢ is a valid first byte of a UTF-8 encoded character sequence, £1_utf8len() will return the
number of bytes in that sequence. It returns -1 if c is not a valid first byte.

unsigned int fl_nonspacing(unsigned int ucs) OksiD

Returns true if ucs is a non-spacing character. [What are non-spacing characters?]

const charx fl_utf8back(const char *p, const char xstart, const char xend) FLTK2

const charx fl_utf8fwd(const char *p, const char xstart, const char xend) FLTK2

If p already points to the start of a UTF-8 character sequence, these functions will return p. Otherwise
f1_utf8back() searches backwards from p and £1_ut £8fwd() searches forwards from p, within
the start and end limits, looking for the start of a UTF-8 character.

unsigned int fl_utf8decode(const char *p, const char xend, int xlen) FLTK2
int fl_utf8encode(unsigned ucs, char «buf) FLTK2

f1_utf8decode() attempts to decode the UTF-8 character that starts at p and may not extend past
end. It returns the Unicode value, and the length of the UTF-8 character sequence is returned via
the len argument. £1_ut f8encode() writes the UTF-8 encoding of ucs into buf and returns the
number of bytes in the sequence. See the main documentation for the treatment of illegal Unicode and
UTF-8 sequences.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

128 Unicode and UTF-8 Support

unsigned int fl_utf8froma(char *dst, unsigned dstlen, const char xsrc, unsigned srclen) FLTK2

unsigned int fl_utf8toa(const char *src, unsigned srclen, char *dst, unsigned dstlen) FLTK2

f1_utf8froma() converts a character string containing single bytes per character (i.e. ASCII or
ISO-8859-1) into UTF-8. If the src string contains only ASCII characters, the return value will be
the same as srclen.

f1_utf8toa() converts a string containing UTF-8 characters into single byte characters. UTF-8
characters do not correspond to ASCII or ISO-8859-1 characters below OxFF are replaced with *?’.

Both functions return the number of bytes that would be written, not counting the null terminator.
destlen provides a means of limiting the number of bytes written, so setting dest len to zero is a
means of measuring how much storage would be needed before doing the real conversion.

charx fl_utf2mbcs(const char xsrc) OksiD

converts a UTF-8 string to a local multi-byte character string. [More info required here!]

unsigned int fl_utf8fromwc(char *dst, unsigned dstlen, const wchar_t xsrc, unsigned srclen) FLTK2
unsigned int fl_utf8towc(const char *src, unsigned srclen, wchar_t *dst, unsigned dstlen) FLTK2

unsigned int fl_utf8toUtf16(const char *src, unsigned srclen, unsigned short *dst, unsigned dstlen) FLTK2

These routines convert between UTF-8 and wchar_t or "wide character" strings. The difficulty lies
in the fact sizeof (wchar_t) is 2 on Windows and 4 on Linux and most other systems. Therefore
some "wide characters" on Windows may be represented as "surrogate pairs" of more than one wch—
ar_t.

f1_utf8fromwc() converts from a "wide character” string to UTF-8. Note that srclen is the
number of wchar_t elements in the source string and on Windows and this might be larger than the
number of characters. dstlen specifies the maximum number of bytes to copy, including the null
terminator.

f1_utf8towc() converts a UTF-8 string into a "wide character" string. Note that on Windows, some
"wide characters" might result in "surrogate pairs" and therefore the return value might be more than
the number of characters. dstlen specifies the maximum number of wchar_t elements to copy,
including a zero terminating element. [Is this all worded correctly?]

f1_utf8toUt£16() converts a UTF-8 string into a "wide character" string using UTF-16 encoding
to handle the "surrogate pairs" on Windows. dstlen specifies the maximum number of wchar_t
elements to copy, including a zero terminating element. [Is this all worded correctly?]

These routines all return the number of elements that would be required for a full conversion of the
src string, including the zero terminator. Therefore setting dst len to zero is a way of measuring
how much storage would be needed before doing the real conversion.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

13.5 FLTK Unicode versions of system calls 129

unsigned int fl_utf8from_mb(char *dst, unsigned dstlen, const char xsrc, unsigned srclen) FLTK?2

unsigned int fl_utf8to_mb(const char *src, unsigned srclen, char xdst, unsigned dstlen) FLTK2

These functions convert between UTF-8 and the locale-specific multi-byte encodings used on some
systems for filenames, etc. If fl_utf8locale() returns true, these functions don’t do anything useful. [Is
this all worded correctly?]

int fl_tolower(unsigned int ucs) OksiD
int fl_toupper(unsigned int ucs) OksiD
int fl_utf_tolower(const unsigned char sstr, int len, char xbuf) OksiD

int fl_utf_toupper(const unsigned char xstr, int len, char xbuf) OksiD

fl_tolower() and £1_toupper() convert a single Unicode character from upper to lower case,
and vice versa. £1_utf_tolower() and £1_utf_toupper() convert a string of bytes, some of
which may be multi-byte UTF-8 encodings of Unicode characters, from upper to lower case, and vice
versa.

Warning: to be safe, buf length must be at least 3x1en [for 16-bit Unicode]

int fl_utf_strcasecmp(const char *s1, const char %s2) OksiD

int fl_utf_strncasecmp(const char *s1, const char *s2, int n) OksiD

fl_utf_strcasecmp() is a UTF-8 aware string comparison function that converts the strings to
lower case Unicode as part of the comparison. £1t_utf_strncasecmp() only compares the first
n characters [bytes?]

13.5 FLTK Unicode versions of system calls

e int fl_access(const charx f, int mode) OksiD

e int fl_chmod(const charx f, int mode) OksiD

« int fl_execvp(const charx file, charx constx argv) OksiD

* FILEx fl_fopen(cont charx f, const char+ mode) OksiD

e charx fl_getcwd(charx buf, int maxlen) OksiD

* charx fl_getenv(const charx name) OksiD

e char fl_make_path(const charx path) - returns char ? OksiD
¢ void fl_make_path_for_file(const charx path) OksiD

e int fl_mkdir(const charx f, int mode) OksiD

« int fl_open(const charx f, int o, ...) OksiD

¢ int fl_rename(const charx f, const charx t) OksiD

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

130 Unicode and UTF-8 Support

¢ int fl_rmdir(const char* f) OksiD
* int f]_stat(const charx path, struct statx buffer) OksiD
¢ int fl_system(const charx f) OksiD

¢ int fl_unlink(const charx* f) OksiD

TODO:

¢ more doc on unicode, add links

 write something about filename encoding on OS X...
e explain the fl_utf8_... commands

* explain issues with F1_Preferences

» why FLTK has no F1_String class

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

Chapter 14
FLTK Enumerations

Note

This file is not actively maintained any more, but is left here as a reference, until the doxygen docu-
mentation is completed.

See also

FL/Enumerations.H.

This appendix lists the enumerations provided in the <FL/Enumerations.H> header file, organized by
section. Constants whose value are zero are marked with "(0)", this is often useful to know when program-
ming.

14.1 Version Numbers

The FLTK version number is stored in a number of compile-time constants:

FL_MAJOR_VERSION - The major release number, currently 1.

FL_MINOR_VERSION - The minor release number, currently 3.

FL_PATCH_VERSION - The patch release number, currently 0.

FL_VERSION - A combined floating-point version number for the major, minor, and patch release
numbers, currently 1.0300.

14.2 Events

Events are identified by an F1_Event enumeration value. The following events are currently defined:

FL_NO_EVENT - No event (or an event fltk does not understand) occurred (0).

FL_PUSH - A mouse button was pushed.

FL_RELEASE - A mouse button was released.

FL_ENTER - The mouse pointer entered a widget.

132

FLTK Enumerations

FL_LEAVE - The mouse pointer left a widget.

FL_DRAG - The mouse pointer was moved with a button pressed.
FL_FOCUS - A widget should receive keyboard focus.

FL_UNFOCUS - A widget loses keyboard focus.

FL_KEYBOARD - A key was pressed.

FL_CLOSE - A window was closed.

FL_MOVE - The mouse pointer was moved with no buttons pressed.
FL_SHORTCUT - The user pressed a shortcut key.

FL_DEACTIVATE - The widget has been deactivated.

FL_ACTIVATE - The widget has been activated.

FL_HIDE - The widget has been hidden.

FL_SHOW - The widget has been shown.

FL_PASTE - The widget should paste the contents of the clipboard.
FL_SELECTIONCLEAR - The widget should clear any selections made for the clipboard.
FL_MOUSEWHEEL - The horizontal or vertical mousewheel was turned.
FL_DND_ENTER - The mouse pointer entered a widget dragging data.
FL_DND_DRAG - The mouse pointer was moved dragging data.
FL_DND_LEAVE - The mouse pointer left a widget still dragging data.

FL_DND_RELEASE - Dragged data is about to be dropped.

14.3 Callback "When” Conditions

The following constants determine when a callback is performed:

FL_WHEN_NEVER - Never call the callback (0).

FL_WHEN_CHANGED - Do the callback only when the widget value changes.
FL_WHEN_NOT_CHANGED - Do the callback whenever the user interacts with the widget.
FL_WHEN_RELEASE - Do the callback when the button or key is released and the value changes.

FL_WHEN_ENTER_KEY - Do the callback when the user presses the ENTER key and the value
changes.

FL_WHEN_RELEASE_ALWAYS - Do the callback when the button or key is released, even if the
value doesn’t change.

FL_WHEN_ENTER_KEY_ALWAYS - Do the callback when the user presses the ENTER key,
even if the value doesn’t change.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

14.4 Fl::event_button() Values 133

14.4 Fl::event_button() Values

The following constants define the button numbers for FL._PUSH and FL_RELEASE events:

e FLL_LEFT_MOUSE - the left mouse button
e FLL MIDDLE_MOUSE - the middle mouse button

e FL_RIGHT_MOUSE - the right mouse button

14.5 Fl::event_key() Values

The following constants define the non-ASCII keys on the keyboard for FL_KEYBOARD and FL._SHO-
RTCUT events:

¢ FL_Button - A mouse button; use F1_Button + n for mouse button n.

* FL_BackSpace - The backspace key.

e FL_Tab - The tab key.

* FL_Enter - The enter key.

* FL_Pause - The pause key.

* FL_Scroll_Lock - The scroll lock key.

e FL_Escape - The escape key.

¢ FL_Home - The home key.

e FL_Left - The left arrow key.

e FL_Up - The up arrow key.

e FL_Right - The right arrow key.

e FL_Down - The down arrow key.

e FL_Page_Up - The page-up key.

e FL_Page_Down - The page-down key.

e FL_End - The end key.

e FL_Print - The print (or print-screen) key.

* FL_Insert - The insert key.

e FL_Menu - The menu key.

e FL_Num_Lock - The num lock key.

e FL_KP - One of the keypad numbers; use FL_KP + n for number n.

* FL_KP_Enter - The enter key on the keypad.

e FL_F - One of the function keys; use FL_F + n for function key n.

e FL_Shift_L - The lefthand shift key.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

134 FLTK Enumerations

e FL_Shift_R - The righthand shift key.

e FL_Control_L - The lefthand control key.

* FL_Control_R - The righthand control key.
* FL_Caps_Lock - The caps lock key.

e FL_Meta_L - The left meta/Windows key.

e FL_Meta_R - The right meta/Windows key.
e FL_AIlt_L - The left alt key.

e FL_AIt_R - The right alt key.

* FL_Delete - The delete key.

14.6 Fl::event_state() Values
The following constants define bits in the Fl::event_state() value:

e FL_SHIFT - One of the shift keys is down.

* FL_CAPS_LOCK - The caps lock is on.

e FL_CTRL - One of the ctrl keys is down.

e FL_ALT - One of the alt keys is down.

e FLL NUM_LOCK - The num lock is on.

e FL_META - One of the meta/Windows keys is down.
e FLL. COMMAND - An alias for FL._ CTRL on WIN32 and X11, or FL_META on MacOS X.
e FLL SCROLL_LOCK - The scroll lock is on.

* FL_BUTTONI - Mouse button 1 is pushed.

* FL_BUTTON?2 - Mouse button 2 is pushed.

* FL_BUTTONS3 - Mouse button 3 is pushed.

e FL_BUTTONS - Any mouse button is pushed.

* FL_BUTTON(n) - Mouse button n (where n > 0) is pushed.

14.7 Alignment Values

The following constants define bits that can be used with FI_Widget::alighn() to control the positioning of
the label:

e FLL_ALIGN_CENTER - The label is centered (0).

e FL_ALIGN_TOP - The label is top-aligned.

e FL_ALIGN_BOTTOM - The label is bottom-aligned.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

14.8 Fonts 135

e FL_ALIGN_LEFT - The label is left-aligned.

e FL_ALIGN_RIGHT - The label is right-aligned.

e FL_ALIGN_CLIP - The label is clipped to the widget.

* FL_ALIGN_WRAP - The label text is wrapped as needed.

* FL_ALIGN_TOP_LEFT - The label appears at the top of the widget, aligned to the left.

e FL_ALIGN_TOP_RIGHT - The label appears at the top of the widget, aligned to the right.

* FL_ ALIGN_BOTTOM_LEFT - The label appears at the bottom of the widget, aligned to the left.

* FLL_ ALIGN_BOTTOM_RIGHT - The label appears at the bottom of the widget, aligned to the right.

* FLL_ ALIGN_LEFT_TOP - The label appears to the left of the widget, aligned at the top. Outside
labels only.

e FL_ALIGN_RIGHT_TOP - The label appears to the right of the widget, aligned at the top. Outside
labels only.

e FL_ALIGN_LEFT_BOTTOM - The label appears to the left of the widget, aligned at the bottom.
Outside labels only.

e FL_ALIGN_RIGHT_BOTTOM - The label appears to the right of the widget, aligned at the bottom.
Outside labels only.

e FL_ALIGN_INSIDE - ’or’ this with other values to put label inside the widget.

* FL_ALIGN_TEXT_OVER_IMAGE - Label text will appear above the image.

* FL_ALIGN_IMAGE_OVER_TEXT - Label text will be below the image.

* FL_ALIGN_IMAGE_NEXT_TO_TEXT - The image will appear to the left of the text.

* FL_ALIGN_TEXT_NEXT_TO_IMAGE - The image will appear to the right of the text.

e FL_ALIGN_IMAGE_BACKDROP - The image will be used as a background for the widget.

14.8 Fonts

The following constants define the standard FLTK fonts:

e FL_HELVETICA - Helvetica (or Arial) normal (0).

e FL_ HELVETICA_BOLD - Helvetica (or Arial) bold.
 FL_HELVETICA_ITALIC - Helvetica (or Arial) oblique.
 FL_HELVETICA_BOLD_ITALIC - Helvetica (or Arial) bold-oblique.
e FLL_ COURIER - Courier normal.

e FLL_ COURIER_BOLD - Courier bold.

e FLL_ COURIER_ITALIC - Courier italic.

e FLL COURIER_BOLD_ITALIC - Courier bold-italic.

e FL_TIMES - Times roman.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

136 FLTK Enumerations

FL_TIMES_BOLD - Times bold.

FL_TIMES_ITALIC - Times italic.

FL_TIMES_BOLD_ITALIC - Times bold-italic.

FL_SYMBOL - Standard symbol font.

FL_SCREEN - Default monospaced screen font.

FL_SCREEN_BOLD - Default monospaced bold screen font.

FL_ZAPF_DINGBATS - Zapf-dingbats font.

14.9 Colors

The F1_Color enumeration type holds a FLTK color value. Colors are either 8-bit indexes into a virtual
colormap or 24-bit RGB color values. Color indices occupy the lower 8 bits of the value, while RGB colors
occupy the upper 24 bits, for a byte organization of RGBI.

14.9.1 Color Constants

Constants are defined for the user-defined foreground and background colors, as well as specific colors and
the start of the grayscale ramp and color cube in the virtual colormap. Inline functions are provided to
retrieve specific grayscale, color cube, or RGB color values.

The following color constants can be used to access the user-defined colors:

FL_BACKGROUND_COLOR - the default background color

FL_BACKGROUND2_COLOR - the default background color for text, list, and valuator widgets

FL_FOREGROUND_COLOR - the default foreground color (0) used for labels and text

FL_INACTIVE_COLOR - the inactive foreground color

FL_SELECTION_COLOR - the default selection/highlight color

The following color constants can be used to access the colors from the FLTK standard color cube:

« FL_BLACK

 FL_ BLUE

* FL_CYAN

* FL_DARK_BLUE

* FL_DARK_CYAN

 FLL DARK_GREEN

» FL DARK_MAGENTA
 FL_DARK_RED

 FL_DARK_YELLOW

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

14.10 Cursors 137

FL_GREEN

FL_MAGENTA
* FL_RED

FL_WHITE

FL_YELLOW
The following are named values within the standard grayscale:

« FL_GRAYO0
 FL_DARK3
 FL_ DARK2
* FLL DARK1
 FL_LIGHT1
 FL_LIGHT2
* FL_LIGHT3

The inline methods for getting a grayscale, color cube, or RGB color value are described in the Colors
section of the Drawing Things in FLTK chapter.

14.10 Cursors

The following constants define the mouse cursors that are available in FLTK. The double-headed arrows
are bitmaps provided by FLTK on X, the others are provided by system-defined cursors.

e FL_CURSOR_DEFAULT - the default cursor, usually an arrow (0)

e FL_CURSOR_ARROW - an arrow pointer

e FLL CURSOR_CROSS - crosshair

e FL_CURSOR_WAIT - watch or hourglass

e FL_CURSOR_INSERT - I-beam

e FL_CURSOR_HAND - hand (uparrow on MSWindows)

e FL_CURSOR_HELP - question mark

e FL_CURSOR_MOVE - 4-pointed arrow

e FL_CURSOR_NS - up/down arrow

* FL._CURSOR_WE - left/right arrow

e FL._CURSOR_NWSE - diagonal arrow

e FL_CURSOR_NESW - diagonal arrow

e FL_CURSOR_NONE - invisible

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

138 FLTK Enumerations

1411 FD "When” Conditions

e FLL_READ - Call the callback when there is data to be read.
e FL_WRITE - Call the callback when data can be written without blocking.
* FL_EXCEPT - Call the callback if an exception occurs on the file.

14.12 Damage Masks
The following damage mask bits are used by the standard FLTK widgets:

* FLL. DAMAGE_CHILD - A child needs to be redrawn.

 FL_ DAMAGE_EXPOSE - The window was exposed.
 FL_DAMAGE_SCROLL - The FI_Scroll widget was scrolled.

« FL_DAMAGE_OVERLAY - The overlay planes need to be redrawn.
 FL_ DAMAGE_USERI - First user-defined damage bit.

 FL_ DAMAGE_USER? - Second user-defined damage bit.

« FL_DAMAGE_ALL - Everything needs to be redrawn.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

Chapter 15

GLUT Compatibility

This appendix describes the GLUT compatibility header file supplied with FLTK.

FLTK’s GLUT compatibility is based on the original GLUT 3.7 and the follow-on FreeGLUT 2.4.0 li-
braries.

15.1 Using the GLUT Compatibility Header File

You should be able to compile existing GLUT source code by including <FL/glut.H> instead of
<GL/glut .h>. This can be done by editing the source, by changing the —I switches to the compiler, or
by providing a symbolic link from GL/glut.hto FL/glut.H.

All files calling GLUT procedures must be compiled with C++. You may have to alter them slightly to get
them to compile without warnings, and you may have to rename them to get make to use the C++ compiler.

You must link with the FLTK library. Most of FL/glut . H is inline functions. You should take a look
at it (and maybe at test/glpuzzle.cxx in the FLTK source) if you are having trouble porting your
GLUT program.

This has been tested with most of the demo programs that come with the GLUT and FreeGLUT distribu-
tions.

15.2 Known Problems

The following functions and/or arguments to functions are missing, and you will have to replace them or
comment them out for your code to compile:

* glutGet (GLUT_ELAPSED_TIME)

* glutGet (GLUT_SCREEN_HEIGHT_MM)

e glutGet (GLUT_SCREEN_WIDTH_MM)

* glutGet (GLUT_WINDOW_NUM_CHILDREN)

* glutInitDisplayMode (GLUT_LUMINANCE)

e glutLayerGet (GLUT_HAS_OVERLAY)

140 GLUT Compatibility

e glutLayerGet (GLUT_LAYER_IN_USE)

e glutPushWindow ()

* glutSetColor(),glutGetColor (),glutCopyColormap ()
* glutVideoResize () missing.

* glutWarpPointer ()

* glutWindowStatusFunc ()

 Spaceball, buttonbox, dials, and tablet functions

Most of the symbols/enumerations have different values than GLUT uses. This will break code that relies
on the actual values. The only symbols guaranteed to have the same values are true/false pairs like GLU-
T_DOWN and GLUT_UP, mouse buttons GLUT_LEFT_BUTTON, GLUT_MIDDLE_BUTTON, GLU-
T_RIGHT_BUTTON, and GLUT_KEY_F1 thru GLUT_KEY_F12.

The strings passed as menu labels are not copied.

glutPostRedisplay () does not work if called from inside a display function. You must use glut—
IdleFunc () if you want your display to update continuously.

glutSwapBuffers () does not work from inside a display function. This is on purpose, because FLTK
swaps the buffers for you.

glutUseLayer () does not work well, and should only be used to initialize transformations inside a
resize callback. You should redraw overlays by using glutOverlayDisplayFunc ().

Overlays are cleared before the overlay display function is called. glutLayerGet (GLUT_OVERLAY_—
DAMAGED) always returns true for compatibility with some GLUT overlay programs. You must rewrite
your code so that g1_color () is used to choose colors in an overlay, or you will get random overlay
colors.

glutSetCursor (GLUT_CURSOR_FULL_CROSSHAIR) justresults in a small crosshair.
The fonts used by glutBitmapCharacter () and glutBitmapWidth () may be different.

glutInit (argc,argv) will consume different switches than GLUT does. It accepts the switches
recognized by Fl::args(), and will accept any abbreviation of these switches (such as "-di" for "-display").

15.3 Mixing GLUT and FLTK Code

You can make your GLUT window a child of a FI_Window with the following scheme. The biggest trick is
that GLUT insists on a call to show () the window at the point it is created, which means the FI_Window
parent window must already be shown.

e Don’tcall glutInit ().

* Create your FI_Window, and any FLTK widgets. Leave a blank area in the window for your GLUT
window.

e show () the FI_Window. Perhaps call show (argc, argv).
e Call window—->begin () so that the GLUT window will be automatically added to it.

e Use glutInitWindowSize () and glutInitWindowPosition () to setthe location in the
parent window to put the GLUT window.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

15.4 class F1_Glut_Window 141

e Put your GLUT code next. It probably does not need many changes. Call window—>end ()
immediately after the glutCreateWindow () !

* You can call either glutMainLoop (), Fl::run(), or loop calling Fl::wait() to run the program.

15.4 class Fl_Glut_ Window

15.4.1 Class Hierarchy

F1_Gl_Window
|
+-——-F1_Glut_Window

15.4.2 Include Files

#include <FL/glut.H>

15.4.3 Description

Each GLUT window is an instance of this class. You may find it useful to manipulate instances directly
rather than use GLUT window id’s. These may be created without opening the display, and thus can fit
better into FLTK’s method of creating windows.

The current GLUT window is available in the global variable glut_window.

new F1_Glut_Window (...) isthe same as glutCreateWindow () except it does not show ()
the window or make the window current.

window—>make_current () is the same as glutSetWindow (number). If the window has not
had show () called on it yet, some functions that assumme an OpenGL context will not work. If you do
show () the window, call make_current () again to set the context.

~F1_Glut_Window () is the same as glutDestroyWindow ().

15.4.4 Members

The FI_Glut_Window class contains several public members that can be altered directly:

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

142

GLUT Compatibility

member description

display A pointer to the function to call to draw the
normal planes.

entry A pointer to the function to call when the mouse
moves into or out of the window.

keyboard A pointer to the function to call when a regular
key is pressed.

menu|3] The menu to post when one of the mouse buttons
is pressed.

mouse A pointer to the function to call when a button is
pressed or released.

motion A pointer to the function to call when the mouse
is moved with a button down.

overlaydisplay A pointer to the function to call to draw the
overlay planes.

passivemotion A pointer to the function to call when the mouse
is moved with no buttons down.

reshape A pointer to the function to call when the window
is resized.

special A pointer to the function to call when a special
key is pressed.

visibility A pointer to the function to call when the window

is iconified or restored (made visible.)

15.4.5 Methods

F1_Glut_Window::Fl_Glut_Window(int X, int y, int w, int h, const char xtitle = 0)

F1_Glut_Window::Fl_Glut_Window(int w, int h, const char xtitle = 0)

The first constructor takes 4 int arguments to create the window with a preset position and size. The
second constructor with 2 arguments will create the window with a preset size, but the window manager
will choose the position according to it’s own whims.

virtual F1_Glut_Window::~FI_Glut_Window()

Destroys the GLUT window.

void FI_Glut_Window::make_current()

Switches all drawing functions to the GLUT window.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

Chapter 16

Forms Compatibility

This appendix describes the Forms compatibility included with FLTK.

Warning: The Forms compatility is deprecated and no longer maintained in FLTK1, and is likely to be
removed completely after the next official release.

16.1 Importing Forms Layout Files

FLUID can read the . £d files put out by all versions of Forms and XForms fdesign. However, it will
mangle them a bit, but it prints a warning message about anything it does not understand. FLUID cannot
write fdesign files, so you should save to a new name so you don’t write over the old one.

You will need to edit your main code considerably to get it to link with the output from FLUID. If
you are not interested in this you may have more immediate luck with the forms compatibility header,
<FL/forms.H>.

16.2 Using the Compatibility Header File

You should be able to compile existing Forms or XForms source code by changing the include directory
switch to your compiler so that the forms . h file supplied with FLTK is included. The forms . h file sim-
ply pulls in <FL/forms.H> so you don’t need to change your source code. Take a look at <FL/forms.H>
to see how it works, but the basic trick is lots of inline functions. Most of the XForms demo programs work
without changes.

You will also have to compile your Forms or XForms program using a C++ compiler. The FLTK library
does not provide C bindings or header files.

Although FLTK was designed to be compatible with the GL Forms library (version 0.3 or so), XForms has
bloated severely and it’s interface is X-specific. Therefore, XForms compatibility is no longer a goal of
FLTK. Compatibility was limited to things that were free, or that would add code that would not be linked
in if the feature is unused, or that was not X-specific.

To use any new features of FLTK, you should rewrite your code to not use the inline functions and instead
use "pure” FLTK. This will make it a lot cleaner and make it easier to figure out how to call the FLTK
functions. Unfortunately this conversion is harder than expected and even Digital Domain’s inhouse code
still uses forms . H a lot.

144 Forms Compatibility

16.3 Problems You Will Encounter

Many parts of XForms use X-specific structures like XEvent in their interface. I did not emulate these!
Unfortunately these features (such as the "canvas" widget) are needed by most large programs. You will
need to rewrite these to use FLTK subclasses.

Fl_Free widgets emulate the old Forms "free" widget. It may be useful for porting programs that change
the handle () function on widgets, but you will still need to rewrite things.

Fl_Timer widgets are provided to emulate the XForms timer. These work, but are quite inefficient and
inaccurate compared to using Fl::add_timeout().

All instance variables are hidden. If you directly refer to the x, v, w, h, label, or other fields of your
Forms widgets you will have to add empty parenthesis after each reference. The easiest way to do this is
to globally replace "—>x" with "->x () ", etc. Replace "boxtype" with "box () ".

const char x arguments to most FLTK methods are simply stored, while Forms would strdup ()
the passed string. This is most noticable with the label of widgets. Your program must always pass static
data such as a string constant or malloc’d buffer to 1abel (). If you are using labels to display program
output you may want to try the FI_Output widget.

The default fonts and sizes are matched to the older GL version of Forms, so all labels will draw somewhat
larger than an XForms program does.

fdesign outputs a setting of a "fdui" instance variable to the main window. I did not emulate this because
I wanted all instance variables to be hidden. You can store the same information in the user_data ()
field of a window. To do this, search through the fdesign output for all occurances of "->fdui" and edit
touse "->user_data () " instead. This will require casts and is not trivial.

The prototype for the functions passed to £1_add_timeout () and f1_set_idle_callback ()
callback are different.

All the following XForms calls are missing:

* FL_REVISION, f1_library_version ()

* FIL_RETURN_DBLCLICK (use Fl::event_clicks())

e f1_add_signal_callback()

e f1_set_form_atactivate () fl_set_form atdeactivate()
e f1_set_form property ()

e f1_set_app_mainform(), f1_get_app_mainform()

e f1 set_form minsize(),fl_set_ form maxsize ()

e f1 _set_form_event_cmask (), fl_get_form_event_cmask ()

e f1_set_form_dblbuffer (), f1_set_object_dblbuffer () (use an FI_Double_Wind-
ow instead)

e f1_adjust_form_size ()

e f1_register_raw_callback()

e f1_set_object_bw(), fl_set_border_width ()

e f1_set_object_resize (), fl_set_object_gravity /()

e f1_set_object_shortcutkey ()

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

16.3 Problems You Will Encounter 145

e f1_set_object_automatic()

e f1_get_object_bbox () (maybe FLTK should do this)

e f1_set_object_prehandler (), f1_set_object_posthandler ()
e f1_enumerate_fonts()

* Most drawing functions

e f1_set_coordunit () (FLTK uses pixels all the time)

e f1_ringbell ()

e f1_gettime ()

e £1_winx() (all these functions)

e f1_initialize(argc,argv,x,y, z) ignores last 3 arguments
e f1_read bitmapfile (), fl_read pixmapfile()

e £f1_addto_browser_chars()

e FL_MENU_BUTTON just draws normally

e f1_set_bitmapbutton_file(), fl_set_pixmapbutton_file ()
e FL_CANVAS objects

* FL_DIGITAL_CLOCK (comes out analog)

e f1_create_bitmap_cursor (), fl_set_cursor_color ()
e f1 _set_dial_angles()

e f1 show_oneliner ()

e f1 set_choice_shortcut (a,b, c)

e command log

* Only some of file selector is emulated

e FL DATE_INPUT

e £1_pupx*() (all these functions)

* textbox object (should be easy but I had no sample programs)

* xyplot object

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

146 Forms Compatibility

16.4 Additional Notes

These notes were written for porting programs written with the older IRISGL version of Forms. Most of
these problems are the same ones encountered when going from old Forms to XForms:

Does Not Run In Background

The IRISGL library always forked when you created the first window, unless "foreground()" was called.
FLTK acts like "foreground()" is called all the time. If you really want the fork behavior do "if (fork())
exit(0)" right at the start of your program.

You Cannot Use IRISGL Windows or fl_queue

If a Forms (not XForms) program if you wanted your own window for displaying things you would create
a IRISGL window and draw in it, periodically calling Forms to check if the user hit buttons on the panels.
If the user did things to the IRISGL window, you would find this out by having the value FL_EVENT
returned from the call to Forms.

None of this works with FLTK. Nor will it compile, the necessary calls are not in the interface.

You have to make a subclass of FI_Gl_Window and write a draw () method and handle () method.
This may require anywhere from a trivial to a major rewrite.

If you draw into the overlay planes you will have to also write a draw_overlay () method and call
redraw_overlay () onthe OpenGL window.

One easy way to hack your program so it works is to make the draw () and handle () methods on your
window set some static variables, storing what event happened. Then in the main loop of your program, call
Fl::wait() and then check these variables, acting on them as though they are events read from £1_queue.

You Must Use OpenGL to Draw Everything

The file <FL/gl.h> defines replacements for a lot of IRISGL calls, translating them to OpenGL. There are
much better translators available that you might want to investigate.

You Cannot Make Forms Subclasses

Programs that call £1_make_object or directly setting the handle routine will not compile. You have
to rewrite them to use a subclass of FI_Widget. It is important to note that the handle () method is not
exactly the same as the handle () function of Forms. Where a Forms handle () returned non-zero, your
handle () mustcall do_callback (). And your handle () must return non-zero if it "understood"
the event.

An attempt has been made to emulate the "free" widget. This appears to work quite well. It may be quicker
to modify your subclass into a "free" widget, since the "handle" functions match.

If your subclass draws into the overlay you are in trouble and will have to rewrite things a lot.

You Cannot Use <device.h>

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

16.4 Additional Notes

147

If you have written your own "free" widgets you will probably get a lot of errors about "getvaluator". You

should substitute:

Forms FLTK

MOUSE_X Fl::event_x_root()
MOUSE_Y Fl::event_y_root()
LEFTSHIFTKEY,RIGHTSHIFTKEY Fl::event_shift()
CAPSLOCKKEY Fl::event_capslock()
LEFTCTRLKEY,RIGHTCTRLKEY Fl::event_ctrl()
LEFTALTKEY,RIGHTALTKEY Fl::event_alt()
MOUSEI1,RIGHTMOUSE Fl::event_state()
MOUSE2 MIDDLEMOUSE Fl::event_state()
MOUSE3,LEFTMOUSE Fl::event_state()

Anything else in getvaluator and you are on your own...

Font Numbers Are Different

The "style" numbers have been changed because I wanted to insert bold-italic versions of the normal fonts.
If you use Times, Courier, or Bookman to display any text you will get a different font out of FLTK. If you

are really desperate to fix this use the following code:

f1_font_name
fl_font_name
fl_font_name (5, "xcourier-medium-o-no*") ;
f1l_font_name (6, "*xtimes-medium-r-nox*");

(3, "*courier-medium-r-nox*");
(
(
(
fl_font_name (7, "+times-bold-r-nox");
(
(
(
(

4,"xcourier-bold-r-nox");

fl_font_name (8, "+xtimes-medium-i-nox*");

fl_font_name (9, "xbookman-light-r-no*");
f1_font_name (10, "xbookman-demi-r—-nox") ;
fl_font_name (11, "xbookman-light-i-nox*");

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

148 Forms Compatibility

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

Chapter 17

Operating System Issues

This appendix describes the operating system specific interfaces in FLTK:

* Accessing the OS Interfaces

The UNIX (X11) Interface

The Windows (WIN32) Interface

The Apple OS X Interface

17.1 Accessing the OS Interfaces

All programs that need to access the operating system specific interfaces must include the following header
file:

#include <FL/x.H>

Despite the name, this header file will define the appropriate interface for your environment. The pages
that follow describe the functionality that is provided for each operating system.

WARNING:
The interfaces provided by this header file may change radically in new FLTK releases. Use them only
when an existing generic FLTK interface is not sufficient.

17.2 The UNIX (X11) Interface

The UNIX interface provides access to the X Window System state information and data structures.

17.2.1 Handling Other X Events

void Fl::add_handler(int (xf)(int))

150 Operating System Issues

Installs a function to parse unrecognized events. If FLTK cannot figure out what to do with an event,
it calls each of these functions (most recent first) until one of them returns non-zero. If none of them
returns non-zero then the event is ignored.

FLTK calls this for any X events it does not recognize, or X events with a window ID that FLTK does
not recognize. You can look at the X event in the £1_xevent variable.

The argument is the FLTK event type that was not handled, or zero for unrecognized X events. These
handlers are also called for global shortcuts and some other events that the widget they were passed to
did not handle, for example FL_ SHORTCUT.

extern XEvent xfl_xevent

This variable contains the most recent X event.

extern ulong fl_event_time

This variable contains the time stamp from the most recent X event that reported it; not all events do.
Many X calls like cut and paste need this value.

Window fl_xid(const FI_Window =)

Returns the XID for a window, or zero if not shown ().

FI_Window *fl_find(ulong xid)

Returns the F1_Window that corresponds to the given XID, or NULL if not found. This function uses
a cache so it is slightly faster than iterating through the windows yourself.

int fl_handle(const XEvent &)

This call allows you to supply the X events to FLTK, which may allow FLTK to cooperate with another
toolkit or library. The return value is non-zero if FLTK understood the event. If the window does not
belong to FLTK and the add_handler () functions all return 0, this function will return false.

Besides feeding events your code should call Fl::flush() periodically so that FLTK redraws its win-
dows.

This function will call the callback functions. It will not return until they complete. In particular, if a
callback pops up a modal window by calling fl_ask(), for instance, it will not return until the modal
function returns.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

17.2 The UNIX (X11) Interface 151

17.2.2 Drawing using Xlib

The following global variables are set before F1_Widget::draw() is called, or by FI_Window::make_curre-
nt():

extern Display *fl_display;
extern Window fl_window;
extern GC fl_gc;

extern int fl_screen;

extern XVisualInfo xfl_visual;
extern Colormap fl_colormap;

You must use them to produce Xlib calls. Don’t attempt to change them. A typical X drawing call is written
like this:

XDrawSomething (f1_display, fl_window, fl_gc, ...);

Other information such as the position or size of the X window can be found by looking at F1_Window::c-
urrent(), which returns a pointer to the FI_Window being drawn.

unsigned long fl_xpixel(FI_Color i)

unsigned long fl_xpixel(uchar r, uchar g, uchar b)

Returns the X pixel number used to draw the given FLTK color index or RGB color. This is the X
pixel that fl_color() would use.

int fl_parse_color(const char* p, uchar& r, uchar& g, uchar& b)

Convert a name into the red, green, and blue values of a color by parsing the X11 color names. On
other systems, f1_parse_color () can only convert names in hexadecimal encoding, for example
#££8083.

extern XFontStruct «fl_xfont

Points to the font selected by the most recent fl_font(). This is not necessarily the current font of £-
1_gc, which is not set until fl_draw() is called. If FLTK was compiled with Xft support, f1_xfont
will usually be O and £1_xft font will contain a pointer to the XftFont structure instead.

extern void *fl_xftfont

If FLTK was compiled with Xft support enabled, £1_xft font points to the xft font selected by the
most recent fl_font(). Otherwise it will be 0. £1_ xft font should be cast to XftFontsx.

17.2.3 Changing the Display, Screen, or X Visual

FLTK uses only a single display, screen, X visual, and X colormap. This greatly simplifies its internal
structure and makes it much smaller and faster. You can change which it uses by setting global variables
before the first FI_Window::show() is called. You may also want to call Fl::visual(), which is a portable
interface to get a full color and/or double buffered visual.

int Fl::display(const char x)

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

152 Operating System Issues

Set which X display to use. This actually does putenv ("DISPLAY=...") so that child programs
will display on the same screen if called with exec () . This must be done before the display is opened.
This call is provided under MacOS and WIN32 but it has no effect.

extern Display *fl_display

The open X display. This is needed as an argument to most Xlib calls. Don’t attempt to change it!
This is NULL before the display is opened.

void fl_open_display()

Opens the display. Does nothing if it is already open. This will make sure £1_display is non-zero.
You should call this if you wish to do X calls and there is a chance that your code will be called before
the first show () of a window.

This may call Fl::abort() if there is an error opening the display.

void fl_close_display()

This closes the X connection. You do not need to call this to exit, and in fact it is faster to not do so! It
may be useful to call this if you want your program to continue without the X connection. You cannot
open the display again, and probably cannot call any FLTK functions.

extern int fl_screen

Which screen number to use. This is set by £1_open_display () to the default screen. You can
change it by setting this to a different value immediately afterwards. It can also be set by changing the
last number in the Fl::display() string to "host:0.#".

extern XVisuallnfo *fl_visual

extern Colormap fl_colormap

The visual and colormap that FLTK will use for all windows. These are set by f1_open_displ-
ay () to the default visual and colormap. You can change them before calling show () on the first
window. Typical code for changing the default visual is:

Fl::args(argc, argv); // do this first so $DISPLAY is set
fl_open_display();

fl visual = find_a_good_visual (fl_display, fl_screen);

if (!'fl_visual) Fl::abort ("No good visual");

fl_colormap = make_a_colormap (fl_display, fl_visual->visual, fl_visual->depth);
// it is now ok to show() windows:

window->show (argc, argv);

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

17.2 The UNIX (X11) Interface 153

17.2.4 Using a Subclass of FI_Window for Special X Stuff

FLTK can manage an X window on a different screen, visual and/or colormap, you just can’t use FLTK’s
drawing routines to draw into it. But you can write your own draw () method that uses Xlib (and/or
OpenGL) calls only.

FLTK can also manage XID’s provided by other libraries or programs, and call those libraries when the
window needs to be redrawn.

To do this, you need to make a subclass of F1_Window and override some of these virtual functions:

virtual void FI_Window::show()

If the window is already shown () this must cause it to be raised, this can usually be done by calling
FI_Window::show(). If not shown () your implementation must call either F1_X::set_xid() or FI_X:-
:make_xid().

An example:

void MyWindow: :show () {
if (shown()) {Fl_Window::show(); return;} // you must do this!
fl_open_display(); // necessary 1if this is first window
// we only calculate the necessary visual colormap once:
static XVisualInfo =*visual;
static Colormap colormap;
if (!visual) {
visual = figure_out_visual();
colormap = XCreateColormap (fl_display, RootWindow (fl_display,fl_screen),
vis—->visual, AllocNone) ;

}

F1l_X::make_xid(this, visual, colormap);
F1_X »Fl_X::set_xid(Fl_Window*, Window xid)

Allocate a hidden class called an FI_X, put the XID into it, and set a pointer to it from the F1_Window.
This causes FI_Window::shown() to return true.

void F1_X::make_xid(FI_Window=x, XVisuallnfox = fl_visual, Colormap = fl_colormap)

This static method does the most onerous parts of creating an X window, including setting the label,
resize limitations, etc. It then does F1_X::set_xid() with this new window and maps the window.

virtual void FI_Window::flush()

This virtual function is called by Fl::flush() to update the window. For FLTK’s own windows it does
this by setting the global variables £1_window and £1_gc and then calling the draw () method.
For your own windows you might just want to put all the drawing code in here.

The X region that is a combination of all damage () calls done so far is in F1_X::1 (this—
) ->region. If NULL then you should redraw the entire window. The undocumented function
fl_clip_region (XRegion) will initialize the FLTK clip stack with a region or NULL for no
clipping. You must set region to NULL afterwards as £1_clip_region () will own and delete it
when done.

Generated on Sun May 15 2011 16:17:07 for FLTK 1.3.0 by Doxygen

154 Operating System Issues

If damage () & FL_DAMAGE_EXPOSE then only X expose events have happened. This may be
useful if you have an undamaged image (such as a backing buffer) around.

Here is a sample where an undamaged image is kept somewhere:

void MyWindow: :flush () {
fl _clip_region(F1l_X::i(this)->region);
Fl X::i(this)->region = 0;
if (damage() != 2) {... draw things into backing store ...}
. copy backing store to window ...

virtual void F1_Window::hide()

Destroy the window server copy of the window. Usually you will destroy contexts, pixmaps, or other
resources used by the window, and then call FI_W