
RFC 9610
JSON Meta Application Protocol (JMAP) for Contacts

Abstract
This document specifies a data model for synchronising contact data with a server using the
JSON Meta Application Protocol (JMAP).

Stream:
RFC:
Category:
Published:
ISSN:
Author:

Internet Engineering Task Force (IETF)
9610
Standards Track
December 2024
2070-1721
N. Jenkins, Ed.
Fastmail

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9610

Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Jenkins Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9610
https://www.rfc-editor.org/info/rfc9610
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Notational Conventions

1.2. Terminology

1.3. Data Model Overview

1.4. Addition to the Capabilities Object

1.4.1. urn:ietf:params:jmap:contacts

2. AddressBooks

2.1. AddressBook/get

2.2. AddressBook/changes

2.3. AddressBook/set

3. ContactCards

3.1. ContactCard/get

3.2. ContactCard/changes

3.3. ContactCard/query

3.3.1. Filtering

3.3.2. Sorting

3.4. ContactCard/queryChanges

3.5. ContactCard/set

3.6. ContactCard/copy

4. Examples

4.1. Fetching Initial Data

4.2. Changing the Default Address Book

5. Internationalisation Considerations

6. Security Considerations

7. IANA Considerations

7.1. JMAP Capability Registration for "contacts"

7.2. JMAP Data Type Registration for "AddressBook"

3

3

3

4

4

4

4

6

6

6

7

8

8

8

8

10

10

10

11

11

11

13

14

14

14

14

15

RFC 9610 JMAP Contacts December 2024

Jenkins Standards Track Page 2

7.3. JMAP Data Type Registration for "ContactCard"

7.4. JMAP Error Codes Registry

7.4.1. addressBookHasContents

7.5. JSContact Property Registrations

7.5.1. id

7.5.2. addressBookIds

7.5.3. blobId

8. References

8.1. Normative References

8.2. Informative References

Author's Address

15

15

15

15

15

16

16

16

16

17

17

1. Introduction
The JSON Meta Application Protocol (JMAP) is a generic protocol for synchronising
data, such as mail, calendars, or contacts, between a client and a server. It is optimised for
mobile and web environments and aims to provide a consistent interface to different data types.

This specification defines a data model for synchronising contacts between a client and a server
using JMAP.

[RFC8620]

1.1. Notational Conventions
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

Type signatures, examples, and property descriptions in this document follow the conventions
established in . The Id, UnsignedInt, and UTCDate data types defined in
Sections 1.2, 1.3, and 1.4 of are also used in this document.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

Section 1.1 of [RFC8620]
[RFC8620]

1.2. Terminology
The same terminology used in the core JMAP specification (see) is also
used in this document.

The terms AddressBook and ContactCard (with these specific capitalizations) are used to refer to
the data types defined in this document and instances of those data types.

Section 1.6 of [RFC8620]

RFC 9610 JMAP Contacts December 2024

Jenkins Standards Track Page 3

https://rfc-editor.org/rfc/rfc8620#section-1.1
https://rfc-editor.org/rfc/rfc8620#section-1.2
https://rfc-editor.org/rfc/rfc8620#section-1.3
https://rfc-editor.org/rfc/rfc8620#section-1.4
https://rfc-editor.org/rfc/rfc8620#section-1.6

1.3. Data Model Overview
An Account (see) with support for the contact data model contains zero
or more AddressBook objects, which is a named collection of zero or more ContactCards. A
ContactCard is a representation of a person, company, entity, or a group of such entities in
JSContact Card format, as defined in . Each ContactCard belongs to one or
more AddressBooks.

In servers with support for JMAP Sharing , users may see and configure sharing of
contact data with others. Sharing permissions are managed per AddressBook.

Section 1.6.2 of [RFC8620]

Section 2 of [RFC9553]

[RFC9670]

1.4. Addition to the Capabilities Object
The capabilities object is returned as part of the JMAP Session object; see .
This document defines one additional capability URI.

Section 2 of [RFC8620]

1.4.1. urn:ietf:params:jmap:contacts

This represents support for the AddressBook and ContactCard data types and associated API
methods. The value of this property in the JMAP Session "capabilities" property is an empty
object.

The value of this property in an account's "accountCapabilities" property is an object that
contain the following information on server capabilities and permissions for that account:

maxAddressBooksPerCard: UnsignedInt|null
The maximum number of AddressBooks (see Section 2) that can be assigned to a single
ContactCard object (see Section 3). This be an integer >= 1, or null for no limit (or rather,
the limit is always the number of AddressBooks in the account).

mayCreateAddressBook: Boolean
The user may create an AddressBook in this account if, and only if, this is true.

MUST

MUST

2. AddressBooks
An AddressBook is a named collection of ContactCards. All ContactCards are associated with one
or more AddressBooks.

An AddressBook object has the following properties:

id: Id (immutable; server-set)
The id of the AddressBook.

name: String
The user-visible name of the AddressBook. This be the empty string and
be greater than 255 octets in size when encoded as UTF-8.

MUST NOT MUST NOT

RFC 9610 JMAP Contacts December 2024

Jenkins Standards Track Page 4

https://rfc-editor.org/rfc/rfc8620#section-1.6.2
https://rfc-editor.org/rfc/rfc9553#section-2
https://rfc-editor.org/rfc/rfc8620#section-2

description: String|null (default: null)
An optional long-form description of the AddressBook that provides context in shared
environments where users need more than just the name.

sortOrder: UnsignedInt (default: 0)
Defines the sort order of AddressBooks when presented in the client's UI so it is consistent
between devices. The number be an integer in the range 0 <= sortOrder < 231.

An AddressBook with a lower order is to be displayed before a AddressBook with a higher
order in any list of AddressBooks in the client's UI. AddressBooks with equal order should be
sorted in alphabetical order by name. The sorting should take into account locale-specific
character order convention.

isDefault: Boolean (server-set)
This be true for exactly one AddressBook in any account and be true for
more than one AddressBook within an account. The default AddressBook should be used by
clients whenever they need to choose an AddressBook for the user within this account and
they do not have any other information on which to make a choice. For example, if the user
creates a new contact card, the client may automatically set the card as belonging to the
default AddressBook from the user's primary account.

isSubscribed: Boolean
True if the user has indicated they wish to see this AddressBook in their client. This
default to false for AddressBooks in shared accounts that the user has access to and true for
any new AddressBooks created by the user themself.

If false, the AddressBook and its contents only be displayed when the user explicitly
requests it. The UI may offer to the user the option of subscribing to it.

shareWith: Id[AddressBookRights]|null (default: null)
A map of the Principal id () to rights for Principals this AddressBook is
shared with. The Principal to which this AddressBook belongs be in this set. This is
null if the AddressBook is not shared with anyone or if the server does not support .
The value may be modified only if the user has the "mayShare" right. The account id for the
Principals may be found in the urn:ietf:params:jmap:principals:owner capability of the
Account to which the AddressBook belongs.

myRights: AddressBookRights (server-set)
The set of access rights the user has in relation to this AddressBook.

An AddressBookRights object has the following properties:

mayRead: Boolean
The user may fetch the ContactCards in this AddressBook.

mayWrite: Boolean
The user may create, modify, or destroy all ContactCards in this AddressBook, or move them
to or from this AddressBook.

MUST

SHOULD MUST NOT

SHOULD

SHOULD

Section 2 of [RFC9670]
MUST NOT

[RFC9670]

RFC 9610 JMAP Contacts December 2024

Jenkins Standards Track Page 5

https://rfc-editor.org/rfc/rfc9670#section-2

mayShare: Boolean
The user may modify the "shareWith" property for this AddressBook.

mayDelete: Boolean
The user may delete the AddressBook itself.

2.1. AddressBook/get
This is a standard "/get" method as described in . The "ids" argument may
be null to fetch all at once.

Section 5.1 of [RFC8620]

2.2. AddressBook/changes
This is a standard "/changes" method as described in .Section 5.2 of [RFC8620]

2.3. AddressBook/set
This is a standard "/set" method as described in , but with the following
additional request arguments:

onDestroyRemoveContents: Boolean (default: false)
If false, any attempt to destroy an AddressBook that still has a ContactCard in it will be
rejected with an "addressBookHasContents" SetError. If true, any ContactCard that is in the
AddressBook will be removed from it, and if such a ContactCard does not belong to any other
AddressBook, it will be destroyed.

onSuccessSetIsDefault: Id|null
If an id is given, and all creates, updates, and destroys (if any) succeed without error, the
server will try to set this AddressBook as the default. (For references to AddressBook
creations, this is equivalent to a creation-reference, so the id will be the creation id prefixed
with a "#".)

If the id is not found or if the change is not permitted by the server for policy reasons, it be
ignored and the current default AddressBook (if any) will remain as such. No error is returned to
the client in this case.

As per , if the default AddressBook is successfully changed, any changed
objects be reported in either the "created" or "updated" argument in the response as
appropriate, with the server-set value included.

The "shareWith" property may only be set by users that have the "mayShare" right. When
modifying the "shareWith" property, the user cannot give a right to a Principal if the Principal did
not already have that right and the user making the change also does not have that right. Any
attempt to do so be rejected with a "forbidden" SetError.

Users can subscribe or unsubscribe to an AddressBook by setting the "isSubscribed" property.
The server forbid users from subscribing to certain AddressBooks even though they have
permission to see them, rejecting the update with a "forbidden" SetError.

Section 5.3 of [RFC8620]

MUST

Section 5.3 of [RFC8620]
MUST

MUST

MAY

RFC 9610 JMAP Contacts December 2024

Jenkins Standards Track Page 6

https://rfc-editor.org/rfc/rfc8620#section-5.1
https://rfc-editor.org/rfc/rfc8620#section-5.2
https://rfc-editor.org/rfc/rfc8620#section-5.3
https://rfc-editor.org/rfc/rfc8620#section-5.3

addressBookHasContents:

The following extra SetError type is defined for "destroy":

The AddressBook has at least one ContactCard assigned to it and
the "onDestroyRemoveContents" argument was false.

3. ContactCards
A ContactCard object contains information about a person, company, or other entity, or
represents a group of such entities. It is a JSContact Card object as defined in

 with the following additional properties:

id: Id (immutable; server-set)
The id of the ContactCard. The "id" property be different to the ContactCard's "uid"
property (as defined in). However, there be more than
one ContactCard with the same uid in an Account.

addressBookIds: Id[Boolean]
The set of AddressBook ids that this ContactCard belongs to. A card belong to at least
one AddressBook at all times (until it is destroyed). The set is represented as an object, with
each key being an AddressBook id. The value for each key in the object be true.

For any Media object in the card (see), a new property is defined:

blobId: Id
An id for the Blob representing the binary contents of the resource.

When returning ContactCards, any Media with a URI that uses the "data:" URL scheme
 return a "blobId" property and omit the "uri" property, as this lets clients load the

(potentially large) image file only when needed and avoids the overhead of Base64 encoding. The
"mediaType" property also be set. Similarly, when creating or updating a ContactCard,
clients send a "blobId" instead of the "uri" property for a Media object.

A contact card with a "kind" property equal to "group" represents a group of contacts. Clients
often present these separately from other contact cards. The "members" property, as defined in

, contains a set of uids (as defined in) for
other contacts that are the members of this group. Clients should consider the group to contain
any ContactCard with a matching uid from any account they have access to that has support for
the urn:ietf:params:jmap:contacts capability. Any uid that cannot be found be
ignored but preserved. For example, suppose a user adds contacts from a shared address book to
their private group, then temporarily loses access to this address book. The uids cannot be
resolved, so the contacts will disappear from the group. However, if they are given permission to
access the data again, the uids will be found and the contacts will reappear.

Section 2 of
[RFC9553]

MAY
Section 2.1.9 of [RFC9553] MUST NOT

MUST

MUST

Section 2.6.4 of [RFC9553]

[RFC2397]
SHOULD

MUST
MAY

Section 2.1.6 of [RFC9553] Section 2.1.9 of [RFC9553]

SHOULD

RFC 9610 JMAP Contacts December 2024

Jenkins Standards Track Page 7

https://rfc-editor.org/rfc/rfc9553#section-2
https://rfc-editor.org/rfc/rfc9553#section-2.1.9
https://rfc-editor.org/rfc/rfc9553#section-2.6.4
https://rfc-editor.org/rfc/rfc9553#section-2.1.6
https://rfc-editor.org/rfc/rfc9553#section-2.1.9

3.1. ContactCard/get
This is a standard "/get" method as described in .Section 5.1 of [RFC8620]

3.2. ContactCard/changes
This is a standard "/changes" method as described in .Section 5.2 of [RFC8620]

3.3. ContactCard/query
This is a standard "/query" method as described in .Section 5.5 of [RFC8620]

3.3.1. Filtering

A FilterCondition object has the following properties, any of which may be omitted:

inAddressBook: Id
An AddressBook id. A card must be in this address book to match the condition.

uid: String
A card must have this string exactly as its uid (as defined in) to
match.

hasMember: String
A card must have a "members" property (as defined in) that
contains this string as one of the uids in the set to match.

kind: String
A card must have a "kind" property (as defined in) that equals this
string exactly to match.

createdBefore: UTCDate
The "created" date-time of the ContactCard (as defined in) must be
before this date-time to match the condition.

createdAfter: UTCDate
The "created" date-time of the ContactCard (as defined in) must be
the same or after this date-time to match the condition.

updatedBefore: UTCDate
The "updated" date-time of the ContactCard (as defined in) must be
before this date-time to match the condition.

updatedAfter: UTCDate
The "updated" date-time of the ContactCard (as defined in) must be
the same or after this date-time to match the condition.

text: String
A card matches this condition if the text matches with text in the card.

Section 2.1.9 of [RFC9553]

Section 2.1.6 of [RFC9553]

Section 2.1.4 of [RFC9553]

Section 2.1.3 of [RFC9553]

Section 2.1.3 of [RFC9553]

Section 2.1.10 of [RFC9553]

Section 2.1.10 of [RFC9553]

RFC 9610 JMAP Contacts December 2024

Jenkins Standards Track Page 8

https://rfc-editor.org/rfc/rfc8620#section-5.1
https://rfc-editor.org/rfc/rfc8620#section-5.2
https://rfc-editor.org/rfc/rfc8620#section-5.5
https://rfc-editor.org/rfc/rfc9553#section-2.1.9
https://rfc-editor.org/rfc/rfc9553#section-2.1.6
https://rfc-editor.org/rfc/rfc9553#section-2.1.4
https://rfc-editor.org/rfc/rfc9553#section-2.1.3
https://rfc-editor.org/rfc/rfc9553#section-2.1.3
https://rfc-editor.org/rfc/rfc9553#section-2.1.10
https://rfc-editor.org/rfc/rfc9553#section-2.1.10

name: String
A card matches this condition if the value of any NameComponent in the "name" property or
the "full" property in the "name" property of the card (as defined in

) matches the value.

name/given: String
A card matches this condition if the value of a NameComponent with kind "given" inside the
"name" property of the card (as defined in) matches the value.

name/surname: String
A card matches this condition if the value of a NameComponent with kind "surname" inside
the "name" property of the card (as defined in) matches the value.

name/surname2: String
A card matches this condition if the value of a NameComponent with kind "surname2" inside
the "name" property of the card (as defined in) matches the value.

nickname: String
A card matches this condition if the "name" of any Nickname in the "nicknames" property of
the card (as defined in) matches the value.

organization: String
A card matches this condition if the "name" of any Organization in the "organizations"
property of the card (as defined in) matches the value.

email: String
A card matches this condition if the "address" or "label" of any EmailAddress in the "emails"
property of the card (as defined in) matches the value.

phone: String
A card matches this condition if the "number" or "label" of any Phone in the "phones"
property of the card (as defined in) matches the value.

onlineService: String
A card matches this condition if the "service", "uri", "user", or "label" of any OnlineService in
the "onlineServices" property of the card (as defined in) matches
the value.

address: String
A card matches this condition if the value of any AddressComponent in the "addresses"
property or the "full" property in the "addresses" property of the card (as defined in

) matches the value.

note: String
A card matches this condition if the "note" of any Note in the "notes" property of the card (as
defined in) matches the value.

Section 2.2.1.2 of
[RFC9553]

Section 2.2.1.2 of [RFC9553]

Section 2.2.1.2 of [RFC9553]

Section 2.2.1.2 of [RFC9553]

Section 2.2.2 of [RFC9553]

Section 2.2.3 of [RFC9553]

Section 2.3.1 of [RFC9553]

Section 2.3.3 of [RFC9553]

Section 2.3.2 of [RFC9553]

Section
2.5.1 of [RFC9553]

Section 2.8.3 of [RFC9553]

RFC 9610 JMAP Contacts December 2024

Jenkins Standards Track Page 9

https://rfc-editor.org/rfc/rfc9553#section-2.2.1.2
https://rfc-editor.org/rfc/rfc9553#section-2.2.1.2
https://rfc-editor.org/rfc/rfc9553#section-2.2.1.2
https://rfc-editor.org/rfc/rfc9553#section-2.2.1.2
https://rfc-editor.org/rfc/rfc9553#section-2.2.2
https://rfc-editor.org/rfc/rfc9553#section-2.2.3
https://rfc-editor.org/rfc/rfc9553#section-2.3.1
https://rfc-editor.org/rfc/rfc9553#section-2.3.3
https://rfc-editor.org/rfc/rfc9553#section-2.3.2
https://rfc-editor.org/rfc/rfc9553#section-2.5.1
https://rfc-editor.org/rfc/rfc9553#section-2.5.1
https://rfc-editor.org/rfc/rfc9553#section-2.8.3

If zero properties are specified on the FilterCondition, the condition always evaluate to
true. If multiple properties are specified, ALL must apply for the condition to be true (it is
equivalent to splitting the object into one-property conditions and making them all the child of
an AND filter operator).

The exact semantics for matching String fields is deliberately not defined to allow for flexibility
in indexing implementation, subject to the following:

Text be matched in a case-insensitive manner.
Text contained in either (but matched) single or double quotes be treated as a
phrase search. That is, a match is required for that exact sequence of words, excluding the
surrounding quotation marks. Use \", \', and \\ to match a literal ", ', and \ respectively in
a phrase.
Outside of a phrase, whitespace be treated as dividing separate tokens that may be
searched for separately in the contact, but all be present for the contact to match the
filter.
Tokens be matched on a whole-word basis using stemming (e.g., a text search for bus
would match "buses", but not "business").

MUST

• SHOULD

• SHOULD

• SHOULD
MUST

• MAY

3.3.2. Sorting

The following values for the "property" field on the Comparator object be supported for
sorting:

"created" - The "created" date on the ContactCard.
"updated" - The "updated" date on the ContactCard.

The following values for the "property" field on the Comparator object be supported for
sorting:

"name/given" - The value of the first NameComponent in the "name" property whose "kind"
is "given".
"name/surname" - The value of the first NameComponent in the "name" property whose
"kind" is "surname".
"name/surname2" - The value of the first NameComponent in the "name" property whose
"kind" is "surname2".

MUST

•
•

SHOULD

•

•

•

3.4. ContactCard/queryChanges
This is a standard "/queryChanges" method as described in .Section 5.6 of [RFC8620]

3.5. ContactCard/set
This is a standard "/set" method as described in .Section 5.3 of [RFC8620]

RFC 9610 JMAP Contacts December 2024

Jenkins Standards Track Page 10

https://rfc-editor.org/rfc/rfc8620#section-5.6
https://rfc-editor.org/rfc/rfc8620#section-5.3

To set a new photo, the file must first be uploaded using the upload mechanism as described in
. This will give the client a valid blobId, size, and type to use. The server

 reject attempts to set a file that is not a recognised image type as the photo for a card.
Section 6.1 of [RFC8620]
MUST

3.6. ContactCard/copy
This is a standard "/copy" method as described in .Section 5.4 of [RFC8620]

4. Examples
For brevity, only the "methodCalls" property of the Request object and the "methodResponses"
property of the Response object is shown in the following examples.

4.1. Fetching Initial Data
A user has authenticated and the client has fetched the JMAP Session object. It finds a single
Account with the "urn:ietf:params:jmap:contacts" capability with id "a0x9" and wants to fetch all
the address books and contacts. It might make the following request:

The server might respond with something like:

Figure 1: "methodCalls" Property of a JMAP Request

[
 ["AddressBook/get", {
 "accountId": "a0x9"
 }, "0"],
 ["ContactCard/get", {
 "accountId": "a0x9"
 }, "1"]
]

RFC 9610 JMAP Contacts December 2024

Jenkins Standards Track Page 11

https://rfc-editor.org/rfc/rfc8620#section-6.1
https://rfc-editor.org/rfc/rfc8620#section-5.4

[
 ["AddressBook/get", {
 "accountId": "a0x9",
 "list": [{
 "id": "062adcfa-105d-455c-bc60-6db68b69c3f3",
 "name": "Personal",
 "description": null,
 "sortOrder": 0,
 "isDefault": true,
 "isSubscribed": true,
 "shareWith": {
 "3f1502e0-63fe-4335-9ff3-e739c188f5dd": {
 "mayRead": true,
 "mayWrite": false,
 "mayShare": false,
 "mayDelete": false
 }
 },
 "myRights": {
 "mayRead": true,
 "mayWrite": true,
 "mayShare": true,
 "mayDelete": false
 }
 }, {
 "id": "cd40089d-35f9-4fd7-980b-ba3a9f1d74fe",
 "name": "Autosaved",
 "description": null,
 "sortOrder": 1,
 "isDefault": false,
 "isSubscribed": true,
 "shareWith": null,
 "myRights": {
 "mayRead": true,
 "mayWrite": true,
 "mayShare": true,
 "mayDelete": false
 }
 }],
 "notFound": [],
 "state": "~4144"
 }, "0"],
 ["ContactCard/get", {
 "accountId": "a0x9",
 "list": [{
 "id": "3",
 "addressBookIds": {
 "062adcfa-105d-455c-bc60-6db68b69c3f3": true
 },
 "name": {
 "components": [
 { "kind": "given", "value": "Joe" },
 { "kind": "surname", "value": "Bloggs" }
],
 "isOrdered": true
 },
 "emails": {

RFC 9610 JMAP Contacts December 2024

Jenkins Standards Track Page 12

Figure 2: "methodResponses" Property of a JMAP Response

 "0": {
 "contexts": {
 "private": true
 },
 "address": "joe.bloggs@example.com"
 }
 }
 }],
 "notFound": [],
 "state": "ewarbckaqJ::112"
 }, "1"]
]

4.2. Changing the Default Address Book
The client tries to change the default address book from "Personal" to "Autosaved" (and makes no
other change):

The server allows the change, returning the following response:

Figure 3: "methodCalls" Property of a JMAP Request

[
 ["AddressBook/set", {
 "accountId": "a0x9",
 "onSuccessSetIsDefault": "cd40089d-35f9-4fd7-980b-ba3a9f1d74fe"
 }, "0"]
]

Figure 4: "methodResponses" Property of a JMAP Response

[
 ["AddressBook/set", {
 "accountId": "a0x9",
 "updated": {
 "cd40089d-35f9-4fd7-980b-ba3a9f1d74fe": {
 "isDefault": true
 },
 "062adcfa-105d-455c-bc60-6db68b69c3f3": {
 "isDefault": false
 },
 "oldState": "~4144",
 "newState": "~4148"
 }
 }, "0"]
]

RFC 9610 JMAP Contacts December 2024

Jenkins Standards Track Page 13

5. Internationalisation Considerations
Experience has shown that unrestricted use of Unicode can lead to problems such as inconsistent
rendering, users reading text and interpreting it differently than intended, and unexpected
results when copying text from one location to another. Servers choose to mitigate this by
restricting the set of characters allowed in otherwise unconstrained String fields. The
FreeformClass, as documented in , might be a good starting point for this.

Attempts to set a value containing code points outside of the permissible set can be handled in a
few ways by the server. The server could choose to strip the forbidden characters or replace
them with U+FFFD (the Unicode replacement character) and store the resulting string. This is
likely to be appropriate for non-printable characters -- such as the "Control Codes" defined in
Section 23.1 of , excluding newline (U+000A), carriage return (U+000D), and tab
(U+0009) -- that can end up in data accidentally due to copy-and-paste issues but are invisible to
the end user. JMAP allows the server to transform data on create/update as long as any changed
properties are returned to the client in the "/set" response so it knows what has changed, as per

. Alternatively, the server just reject the create/update with an
"invalidProperties" SetError.

MAY

Section 4.3 of [RFC8264]

[UNICODE]

Section 5.3 of [RFC8620] MAY

6. Security Considerations
All security considerations of JMAP apply to this specification. Additional
considerations specific to the data types and functionality introduced by this document are
described in the following subsection.

Contacts consist almost entirely of private, personally identifiable information, and represent the
social connections of users. Privacy leaks can have real world consequences, and contact servers
and clients be mindful of the need to keep all data secure.

Servers enforce the Access Control Lists (ACLs) set on address books to ensure only
authorised data is shared.

[RFC8620]

MUST

MUST

7. IANA Considerations

Capability Name:
Intended Use:
Change Controller:
Security and Privacy Considerations:
Reference:

7.1. JMAP Capability Registration for "contacts"
IANA has registered "contacts" in the "JMAP Capabilities" registry as follows:

urn:ietf:params:jmap:contacts
common

IETF
this document, Section 6

this document

RFC 9610 JMAP Contacts December 2024

Jenkins Standards Track Page 14

https://rfc-editor.org/rfc/rfc8264#section-4.3
https://www.unicode.org/versions/latest/core-spec/chapter-23/#G20365
https://rfc-editor.org/rfc/rfc8620#section-5.3

Type Name:
Can Reference Blobs:
Can Use for State Change:
Capability:
Reference:

7.2. JMAP Data Type Registration for "AddressBook"
IANA has registered "AddressBook" in the "JMAP Data Types" registry as follows:

AddressBook
No

Yes
urn:ietf:params:jmap:contacts
this document

Type Name:
Can Reference Blobs:
Can Use for State Change:
Capability:
Reference:

7.3. JMAP Data Type Registration for "ContactCard"
IANA has registered "ContactCard" in the "JMAP Data Types" registry as follows:

ContactCard
Yes

Yes
urn:ietf:params:jmap:contacts
this document

7.4. JMAP Error Codes Registry
The following subsection has registered a new error code in the "JMAP Error Codes" registry, as
defined in .Section 9 of [RFC8620]

JMAP Error Code:
Intended Use:
Change Controller:
Description:

Reference:

7.4.1. addressBookHasContents

addressBookHasContents
common

IETF
The AddressBook has at least one ContactCard assigned to it, and the

"onDestroyRemoveContents" argument was false.
This document, Section 2.3

7.5. JSContact Property Registrations
IANA has registered the following additional properties in the "JSContact Properties" registry, as
defined in .Section 3 of [RFC9553]

Property Name:
Property Type:
Property Context:
Intended Usage:

7.5.1. id

id
not applicable

Card
reserved

RFC 9610 JMAP Contacts December 2024

Jenkins Standards Track Page 15

https://rfc-editor.org/rfc/rfc8620#section-9
https://rfc-editor.org/rfc/rfc9553#section-3

[RFC2119]

[RFC2397]

[RFC8174]

[RFC8620]

[RFC9553]

8. References

8.1. Normative References

, , ,
, , March 1997,
.

, , , , August
1998, .

, ,
, , , May 2017,

.

 and , ,
, , July 2019,

.

 and ,
, , , May 2024,

.

Since Version:
Change Controller:
Reference:

1.0
IETF

this document

Property Name:
Property Type:
Property Context:
Intended Usage:
Since Version:
Change Controller:
Reference:

7.5.2. addressBookIds

addressBookIds
not applicable

Card
reserved

1.0
IETF

this document

Property Name:
Property Type:
Property Context:
Intended Usage:
Since Version:
Change Controller:
Reference:

7.5.3. blobId

blobId
not applicable

Media
reserved

1.0
IETF

this document

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Masinter, L. "The "data" URL scheme" RFC 2397 DOI 10.17487/RFC2397
<https://www.rfc-editor.org/info/rfc2397>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Jenkins, N. C. Newman "The JSON Meta Application Protocol (JMAP)" RFC
8620 DOI 10.17487/RFC8620 <https://www.rfc-editor.org/info/
rfc8620>

Stepanek, R. M. Loffredo "JSContact: A JSON Representation of Contact
Data" RFC 9553 DOI 10.17487/RFC9553 <https://www.rfc-editor.org/
info/rfc9553>

RFC 9610 JMAP Contacts December 2024

Jenkins Standards Track Page 16

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2397
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8620
https://www.rfc-editor.org/info/rfc8620
https://www.rfc-editor.org/info/rfc9553
https://www.rfc-editor.org/info/rfc9553

[RFC9670]

[RFC8264]

[UNICODE]

, , ,
, November 2024, .

8.2. Informative References

 and ,
,

, , October 2017,
.

, ,
.

Jenkins, N., Ed. "JSON Meta Application Protocol (JMAP) Sharing" RFC 9670 DOI
10.17487/RFC9670 <https://www.rfc-editor.org/info/rfc9670>

Saint-Andre, P. M. Blanchet "PRECIS Framework: Preparation, Enforcement,
and Comparison of Internationalized Strings in Application Protocols" RFC
8264 DOI 10.17487/RFC8264 <https://www.rfc-editor.org/info/
rfc8264>

The Unicode Consortium "The Unicode Standard" <https://www.unicode.org/
versions/latest/>

Author's Address
Neil Jenkins ()editor
Fastmail
PO Box 234, Collins St West
Melbourne VIC 8007
Australia

neilj@fastmailteam.comEmail:
https://www.fastmail.comURI:

RFC 9610 JMAP Contacts December 2024

Jenkins Standards Track Page 17

https://www.rfc-editor.org/info/rfc9670
https://www.rfc-editor.org/info/rfc8264
https://www.rfc-editor.org/info/rfc8264
https://www.unicode.org/versions/latest/
https://www.unicode.org/versions/latest/
mailto:neilj@fastmailteam.com
https://www.fastmail.com

	RFC 9610
	JSON Meta Application Protocol (JMAP) for Contacts
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions
	1.2. Terminology
	1.3. Data Model Overview
	1.4. Addition to the Capabilities Object
	1.4.1. urn:ietf:params:jmap:contacts

	2. AddressBooks
	2.1. AddressBook/get
	2.2. AddressBook/changes
	2.3. AddressBook/set

	3. ContactCards
	3.1. ContactCard/get
	3.2. ContactCard/changes
	3.3. ContactCard/query
	3.3.1. Filtering
	3.3.2. Sorting

	3.4. ContactCard/queryChanges
	3.5. ContactCard/set
	3.6. ContactCard/copy

	4. Examples
	4.1. Fetching Initial Data
	4.2. Changing the Default Address Book

	5. Internationalisation Considerations
	6. Security Considerations
	7. IANA Considerations
	7.1. JMAP Capability Registration for "contacts"
	7.2. JMAP Data Type Registration for "AddressBook"
	7.3. JMAP Data Type Registration for "ContactCard"
	7.4. JMAP Error Codes Registry
	7.4.1. addressBookHasContents

	7.5. JSContact Property Registrations
	7.5.1. id
	7.5.2. addressBookIds
	7.5.3. blobId

	8. References
	8.1. Normative References
	8.2. Informative References

	Author's Address

 JSON Meta Application Protocol (JMAP) for Contacts

 Fastmail

 PO Box 234, Collins St West
 Melbourne
 VIC 8007
 Australia

 neilj@fastmailteam.com
 https://www.fastmail.com

 ART
 jmap
 JMAP
 JSON
 contacts

 This document specifies a data model for synchronising contact data with a server using the JSON Meta Application Protocol (JMAP).

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Notational Conventions

 . Terminology

 . Data Model Overview

 . Addition to the Capabilities Object

 . urn:ietf:params:jmap:contacts

 . AddressBooks

 . AddressBook/get

 . AddressBook/changes

 . AddressBook/set

 . ContactCards

 . ContactCard/get

 . ContactCard/changes

 . ContactCard/query

 . Filtering

 . Sorting

 . ContactCard/queryChanges

 . ContactCard/set

 . ContactCard/copy

 . Examples

 . Fetching Initial Data

 . Changing the Default Address Book

 . Internationalisation Considerations

 . Security Considerations

 . IANA Considerations

 . JMAP Capability Registration for "contacts"

 . JMAP Data Type Registration for "AddressBook"

 . JMAP Data Type Registration for "ContactCard"

 . JMAP Error Codes Registry

 . addressBookHasContents

 . JSContact Property Registrations

 . id

 . addressBookIds

 . blobId

 . References

 . Normative References

 . Informative References

 Author's Address

 Introduction
 The JSON Meta Application Protocol (JMAP) is a generic protocol for synchronising data, such as mail, calendars, or contacts, between a client and a server. It is optimised for mobile and web environments and aims to provide a consistent interface to different data types.
 This specification defines a data model for synchronising contacts between a client and a server using JMAP.

 Notational Conventions

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 Type signatures, examples, and property descriptions in this document follow the conventions established in . The Id, UnsignedInt, and UTCDate data types defined in Sections , , and of are also used in this document.

 Terminology
 The same terminology used in the core JMAP specification (see) is also used in this document.
 The terms AddressBook and ContactCard (with these specific capitalizations) are used to refer to the data types defined in this document and instances of those data types.

 Data Model Overview
 An Account (see) with support for the contact data model contains zero or more AddressBook objects, which is a named collection of zero or more ContactCards. A ContactCard is a representation of a person, company, entity, or a group of such entities in JSContact Card format, as defined in . Each ContactCard belongs to one or more AddressBooks.
 In servers with support for JMAP Sharing , users may see and configure sharing of contact data with others. Sharing permissions are managed per AddressBook.

 Addition to the Capabilities Object
 The capabilities object is returned as part of the JMAP Session object; see . This document defines one additional capability URI.

 urn:ietf:params:jmap:contacts
 This represents support for the AddressBook and ContactCard data types and associated API methods. The value of this property in the JMAP Session "capabilities" property is an empty object.
 The value of this property in an account's "accountCapabilities" property is an object that MUST contain the following information on server capabilities and permissions for that account:

 maxAddressBooksPerCard: UnsignedInt|null
 The maximum number of AddressBooks (see) that can be assigned to a single ContactCard object (see). This MUST be an integer >= 1, or null for no limit (or rather, the limit is always the number of AddressBooks in the account).
 mayCreateAddressBook: Boolean
 The user may create an AddressBook in this account if, and only if, this is true.

 AddressBooks
 An AddressBook is a named collection of ContactCards. All ContactCards are associated with one or more AddressBooks.
 An AddressBook object has the following properties:

 id: Id (immutable; server-set)
 The id of the AddressBook.
 name: String
 The user-visible name of the AddressBook. This MUST NOT be the empty string and MUST NOT be greater than 255 octets in size when encoded as UTF-8.
 description: String|null (default: null)
 An optional long-form description of the AddressBook that provides context in shared environments where users need more than just the name.
 sortOrder: UnsignedInt (default: 0)

 Defines the sort order of AddressBooks when presented in the client's UI so it is consistent between devices. The number MUST be an integer in the range 0 <= sortOrder < 2 31.
 An AddressBook with a lower order is to be displayed before a AddressBook with a higher order in any list of AddressBooks in the client's UI. AddressBooks with equal order should be sorted in alphabetical order by name. The sorting should take into account locale-specific character order convention.

 isDefault: Boolean (server-set)
 This SHOULD be true for exactly one AddressBook in any account and MUST NOT
be true for more than one AddressBook within an account. The default
AddressBook should be used by clients whenever they need to choose an
AddressBook for the user within this account and they do not have any other
information on which to make a choice. For example, if the user creates a new
contact card, the client may automatically set the card as belonging to the
default AddressBook from the user's primary account.
 isSubscribed: Boolean

 True if the user has indicated they wish to see this AddressBook in their client. This SHOULD default to false for AddressBooks in shared accounts that the user has access to and true for any new AddressBooks created by the user themself.
 If false, the AddressBook and its contents SHOULD only be
displayed when the user explicitly requests it. The UI may offer to the user the option of subscribing to it.

 shareWith: Id[AddressBookRights]|null (default: null)
 A map of the Principal id () to rights for Principals this AddressBook is shared with. The Principal to which this AddressBook belongs MUST NOT be in this set. This is null if the AddressBook is not shared with anyone or if the server does not support . The value may be modified only if the user has the "mayShare" right. The account id for the Principals may be found in the urn:ietf:params:jmap:principals:owner capability of the Account to which the AddressBook belongs.
 myRights: AddressBookRights (server-set)
 The set of access rights the user has in relation to this AddressBook.

 An AddressBookRights object has the following properties:

 mayRead: Boolean
 The user may fetch the ContactCards in this AddressBook.
 mayWrite: Boolean
 The user may create, modify, or destroy all ContactCards in this AddressBook, or move them to or from this AddressBook.
 mayShare: Boolean
 The user may modify the "shareWith" property for this AddressBook.
 mayDelete: Boolean
 The user may delete the AddressBook itself.

 AddressBook/get
 This is a standard "/get" method as described in . The "ids" argument may be null to fetch all at once.

 AddressBook/changes
 This is a standard "/changes" method as described in .

 AddressBook/set
 This is a standard "/set" method as described in , but with the following additional request arguments:

 onDestroyRemoveContents: Boolean (default: false)
 If false, any attempt to destroy an AddressBook that still has a ContactCard
in it will be rejected with an "addressBookHasContents" SetError. If
true, any ContactCard that is in the AddressBook will be removed from it, and if such a ContactCard does not belong to any other AddressBook, it will be destroyed.
 onSuccessSetIsDefault: Id|null
 If an id is given, and all creates, updates, and destroys (if any) succeed
without error, the server will try to set this AddressBook as the default.
(For references to AddressBook creations, this is equivalent to a
creation-reference, so the id will be the creation id prefixed with a "#".)

 If the id is not found or if the change is not permitted by the server for
policy reasons, it MUST be ignored and the current default
AddressBook (if any) will remain as such. No error is returned to the client
in this case.
 As per , if the default AddressBook is successfully changed, any changed objects MUST be reported in either the "created" or "updated" argument in the response as appropriate, with the server-set value included.
 The "shareWith" property may only be set by users that have the "mayShare" right. When modifying the "shareWith" property, the user cannot give a right to a Principal if the Principal did not already have that right and the user making the change also does not have that right. Any attempt to do so MUST be rejected with a "forbidden" SetError.
 Users can subscribe or unsubscribe to an AddressBook by setting the "isSubscribed" property. The server MAY forbid users from subscribing to certain AddressBooks even though they have permission to see them, rejecting the update with a "forbidden" SetError.
 The following extra SetError type is defined for "destroy":

 addressBookHasContents:
 The AddressBook has at least one ContactCard assigned to it and the "onDestroyRemoveContents" argument was false.

 ContactCards
 A ContactCard object contains information about a person, company, or other entity, or represents a group of such entities. It is a JSContact Card object as defined in with the following additional properties:

 id: Id (immutable; server-set)
 The id of the ContactCard. The "id" property MAY be different to the ContactCard's "uid" property (as defined in). However, there MUST NOT be more than one ContactCard with the same uid in an Account.
 addressBookIds: Id[Boolean]
 The set of AddressBook ids that this ContactCard belongs to. A card MUST belong to at least one AddressBook at all times (until it is destroyed). The set is represented as an object, with each key being an AddressBook id. The value for each key in the object MUST be true.

 For any Media object in the card (see), a new property is defined:

 blobId: Id
 An id for the Blob representing the binary contents of the resource.

 When returning ContactCards, any Media with a URI that uses the "data:" URL scheme SHOULD return a "blobId" property and omit the "uri" property, as this lets clients load the (potentially large) image file only when needed and avoids the overhead of Base64 encoding. The "mediaType" property MUST also be set. Similarly, when creating or updating a ContactCard, clients MAY send a "blobId" instead of the "uri" property for a Media object.
 A contact card with a "kind" property equal to "group" represents a group of contacts. Clients often present these separately from other contact cards. The "members" property, as defined in , contains a set of uids (as defined in) for other contacts that are the members of this group.
Clients should consider the group to contain any ContactCard with a matching uid from any account they have access to that has support for the urn:ietf:params:jmap:contacts capability. Any uid that cannot be found SHOULD be ignored but preserved. For example, suppose a user adds contacts from a shared address book to their private group, then temporarily loses access to this address book. The uids cannot be resolved, so the contacts will disappear from the group. However, if they are given permission to access the data again, the uids will be found and the contacts will reappear.

 ContactCard/get
 This is a standard "/get" method as described in .

 ContactCard/changes
 This is a standard "/changes" method as described in .

 ContactCard/query
 This is a standard "/query" method as described in .

 Filtering
 A FilterCondition object has the following properties, any of which may be omitted:

 inAddressBook: Id
 An AddressBook id. A card must be in this address book to match the condition.
 uid: String
 A card must have this string exactly as its uid (as defined in) to match.
 hasMember: String
 A card must have a "members" property (as defined in) that contains this string as one of the uids in the set to match.
 kind: String
 A card must have a "kind" property (as defined in) that equals this string exactly to match.
 createdBefore: UTCDate
 The "created" date-time of the ContactCard (as defined in) must be before this date-time to match the condition.
 createdAfter: UTCDate
 The "created" date-time of the ContactCard (as defined in) must be the same or after this date-time to match the condition.
 updatedBefore: UTCDate
 The "updated" date-time of the ContactCard (as defined in) must be before this date-time to match the condition.
 updatedAfter: UTCDate
 The "updated" date-time of the ContactCard (as defined in) must be the same or after this date-time to match the condition.
 text: String
 A card matches this condition if the text matches with text in the card.
 name: String
 A card matches this condition if the value of any NameComponent in the "name" property or the "full" property in the "name" property of the card (as defined in) matches the value.
 name/given: String
 A card matches this condition if the value of a NameComponent with kind "given" inside the "name" property of the card (as defined in) matches the value.
 name/surname: String
 A card matches this condition if the value of a NameComponent with kind "surname" inside the "name" property of the card (as defined in) matches the value.
 name/surname2: String
 A card matches this condition if the value of a NameComponent with kind "surname2" inside the "name" property of the card (as defined in) matches the value.
 nickname: String
 A card matches this condition if the "name" of any Nickname in the "nicknames" property of the card (as defined in) matches the value.
 organization: String
 A card matches this condition if the "name" of any Organization in the "organizations" property of the card (as defined in) matches the value.
 email: String
 A card matches this condition if the "address" or "label" of any EmailAddress in the "emails" property of the card (as defined in) matches the value.
 phone: String
 A card matches this condition if the "number" or "label" of any Phone in the "phones" property of the card (as defined in) matches the value.
 onlineService: String
 A card matches this condition if the "service", "uri", "user", or "label" of any OnlineService in the "onlineServices" property of the card (as defined in) matches the value.
 address: String
 A card matches this condition if the value of any AddressComponent in the "addresses" property or the "full" property in the "addresses" property of the card (as defined in) matches the value.
 note: String
 A card matches this condition if the "note" of any Note in the "notes" property of the card (as defined in) matches the value.

 If zero properties are specified on the FilterCondition, the condition MUST always evaluate to true. If multiple properties are specified, ALL must apply for the condition to be true (it is equivalent to splitting the object into one-property conditions and making them all the child of an AND filter operator).
 The exact semantics for matching String fields is deliberately not defined to allow for flexibility in indexing implementation, subject to the following:

 Text SHOULD be matched in a case-insensitive manner.
 Text contained in either (but matched) single or double quotes SHOULD be treated as a phrase search. That is, a match is required for that exact sequence of words, excluding the surrounding quotation marks. Use \", \', and \\ to match a literal ", ', and \ respectively in a phrase.
 Outside of a phrase, whitespace SHOULD be treated as dividing separate tokens that may be searched for separately in the contact, but MUST all be present for the contact to match the filter.
 Tokens MAY be matched on a whole-word basis using stemming (e.g., a text search for bus would match "buses", but not "business").

 Sorting
 The following values for the "property" field on the Comparator object
 MUST be supported for sorting:

 "created" - The "created" date on the ContactCard.
 "updated" - The "updated" date on the ContactCard.

 The following values for the "property" field on the Comparator object SHOULD be supported for sorting:

 "name/given" - The value of the first NameComponent in the "name" property
whose "kind" is "given".
 "name/surname" - The value of the first NameComponent in the "name" property
whose "kind" is "surname".
 "name/surname2" - The value of the first NameComponent in the "name"
property whose "kind" is "surname2".

 ContactCard/queryChanges
 This is a standard "/queryChanges" method as described in .

 ContactCard/set
 This is a standard "/set" method as described in .
 To set a new photo, the file must first be uploaded using the upload mechanism as described in . This will give the client a valid blobId, size, and type to use. The server MUST reject attempts to set a file that is not a recognised image type as the photo for a card.

 ContactCard/copy
 This is a standard "/copy" method as described in .

 Examples
 For brevity, only the "methodCalls" property of the Request object and the "methodResponses" property of the Response object is shown in the following examples.

 Fetching Initial Data
 A user has authenticated and the client has fetched the JMAP Session object. It finds a single Account with the "urn:ietf:params:jmap:contacts" capability with id "a0x9" and wants to fetch all the address books and contacts. It might make the following request:

 "methodCalls" Property of a JMAP Request
 [
 ["AddressBook/get", {
 "accountId": "a0x9"
 }, "0"],
 ["ContactCard/get", {
 "accountId": "a0x9"
 }, "1"]
]

 The server might respond with something like:

 "methodResponses" Property of a JMAP Response
 [
 ["AddressBook/get", {
 "accountId": "a0x9",
 "list": [{
 "id": "062adcfa-105d-455c-bc60-6db68b69c3f3",
 "name": "Personal",
 "description": null,
 "sortOrder": 0,
 "isDefault": true,
 "isSubscribed": true,
 "shareWith": {
 "3f1502e0-63fe-4335-9ff3-e739c188f5dd": {
 "mayRead": true,
 "mayWrite": false,
 "mayShare": false,
 "mayDelete": false
 }
 },
 "myRights": {
 "mayRead": true,
 "mayWrite": true,
 "mayShare": true,
 "mayDelete": false
 }
 }, {
 "id": "cd40089d-35f9-4fd7-980b-ba3a9f1d74fe",
 "name": "Autosaved",
 "description": null,
 "sortOrder": 1,
 "isDefault": false,
 "isSubscribed": true,
 "shareWith": null,
 "myRights": {
 "mayRead": true,
 "mayWrite": true,
 "mayShare": true,
 "mayDelete": false
 }
 }],
 "notFound": [],
 "state": "~4144"
 }, "0"],
 ["ContactCard/get", {
 "accountId": "a0x9",
 "list": [{
 "id": "3",
 "addressBookIds": {
 "062adcfa-105d-455c-bc60-6db68b69c3f3": true
 },
 "name": {
 "components": [
 { "kind": "given", "value": "Joe" },
 { "kind": "surname", "value": "Bloggs" }
],
 "isOrdered": true
 },
 "emails": {
 "0": {
 "contexts": {
 "private": true
 },
 "address": "joe.bloggs@example.com"
 }
 }
 }],
 "notFound": [],
 "state": "ewarbckaqJ::112"
 }, "1"]
]

 Changing the Default Address Book
 The client tries to change the default address book from "Personal" to "Autosaved" (and makes no other change):

 "methodCalls" Property of a JMAP Request
 [
 ["AddressBook/set", {
 "accountId": "a0x9",
 "onSuccessSetIsDefault": "cd40089d-35f9-4fd7-980b-ba3a9f1d74fe"
 }, "0"]
]

 The server allows the change, returning the following response:

 "methodResponses" Property of a JMAP Response
 [
 ["AddressBook/set", {
 "accountId": "a0x9",
 "updated": {
 "cd40089d-35f9-4fd7-980b-ba3a9f1d74fe": {
 "isDefault": true
 },
 "062adcfa-105d-455c-bc60-6db68b69c3f3": {
 "isDefault": false
 },
 "oldState": "~4144",
 "newState": "~4148"
 }
 }, "0"]
]

 Internationalisation Considerations
 Experience has shown that unrestricted use of Unicode can lead to problems such as inconsistent rendering, users reading text and interpreting it differently than intended, and unexpected results when copying text from one location to another. Servers MAY choose to mitigate this by restricting the set of characters allowed in otherwise unconstrained String fields. The FreeformClass, as documented in , might be a good starting point for
this.
 Attempts to set a value containing code points outside of the permissible set can be handled in a few ways by the server. The server could choose to strip the forbidden characters or replace them with U+FFFD (the Unicode replacement character) and store the resulting string. This is likely to be appropriate for non-printable characters -- such as the "Control Codes" defined in Section 23.1 of , excluding newline (U+000A), carriage return (U+000D), and tab (U+0009) -- that can end up in data accidentally due to copy-and-paste issues but are invisible to the end user. JMAP allows the server to transform data on create/update as long as any changed properties are returned to the client in the "/set" response so it knows what has changed, as per . Alternatively, the server MAY just reject the create/update with an "invalidProperties" SetError.

 Security Considerations
 All security considerations of JMAP apply to this specification. Additional considerations specific to the data types and functionality introduced by this document are described in the following subsection.
 Contacts consist almost entirely of private, personally identifiable information, and represent the social connections of users. Privacy leaks can have real world consequences, and contact servers and clients MUST be mindful of the need to keep all data secure.
 Servers MUST enforce the Access Control Lists (ACLs) set on address books to ensure only authorised data is shared.

 IANA Considerations

 JMAP Capability Registration for "contacts"
 IANA has registered "contacts" in the "JMAP Capabilities" registry as follows:

 Capability Name:

 urn:ietf:params:jmap:contacts
 Intended Use:
 common
 Change Controller:
 IETF
 Security and Privacy Considerations:
 this document,
 Reference:
 this document

 JMAP Data Type Registration for "AddressBook"
 IANA has registered "AddressBook" in the "JMAP Data Types" registry as follows:

 Type Name:

 AddressBook
 Can Reference Blobs:
 No
 Can Use for State Change:
 Yes
 Capability:

 urn:ietf:params:jmap:contacts
 Reference:
 this document

 JMAP Data Type Registration for "ContactCard"
 IANA has registered "ContactCard" in the "JMAP Data Types" registry as follows:

 Type Name:

 ContactCard
 Can Reference Blobs:
 Yes
 Can Use for State Change:
 Yes
 Capability:

 urn:ietf:params:jmap:contacts
 Reference:
 this document

 JMAP Error Codes Registry
 The following subsection has registered a new error code in the "JMAP
Error Codes" registry, as defined in .

 addressBookHasContents

 JMAP Error Code:
 addressBookHasContents
 Intended Use:
 common
 Change Controller:
 IETF
 Description:
 The AddressBook has at least one ContactCard assigned to it, and the "onDestroyRemoveContents" argument was false.
 Reference:
 This document,

 JSContact Property Registrations
 IANA has registered the following additional properties in the "JSContact Properties" registry, as defined in .

 id

 Property Name:
 id
 Property Type:
 not applicable
 Property Context:
 Card
 Intended Usage:
 reserved
 Since Version:
 1.0
 Change Controller:
 IETF
 Reference:
 this document

 addressBookIds

 Property Name:
 addressBookIds
 Property Type:
 not applicable
 Property Context:
 Card
 Intended Usage:
 reserved
 Since Version:
 1.0
 Change Controller:
 IETF
 Reference:
 this document

 blobId

 Property Name:
 blobId
 Property Type:
 not applicable
 Property Context:
 Media
 Intended Usage:
 reserved
 Since Version:
 1.0
 Change Controller:
 IETF
 Reference:
 this document

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 The "data" URL scheme

 A new URL scheme, "data", is defined. It allows inclusion of small data items as "immediate" data, as if it had been included externally. [STANDARDS-TRACK]

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 The JSON Meta Application Protocol (JMAP)

 This document specifies a protocol for clients to efficiently query, fetch, and modify JSON-based data objects, with support for push notification of changes and fast resynchronisation and for out-of- band binary data upload/download.

 JSContact: A JSON Representation of Contact Data

 This specification defines a data model and JavaScript Object Notation (JSON) representation of contact card information that can be used for data storage and exchange in address book or directory applications. It aims to be an alternative to the vCard data format and to be unambiguous, extendable, and simple to process. In contrast to the JSON-based jCard format, it is not a direct mapping from the vCard data model and expands semantics where appropriate. Two additional specifications define new vCard elements and how to convert between JSContact and vCard.

 JSON Meta Application Protocol (JMAP) Sharing

 This document specifies a data model for sharing data between users using the JSON Meta Application Protocol (JMAP). Future documents can reference this document when defining data types to support a consistent model of sharing.

 Informative References

 PRECIS Framework: Preparation, Enforcement, and Comparison of Internationalized Strings in Application Protocols

 Application protocols using Unicode code points in protocol strings need to properly handle such strings in order to enforce internationalization rules for strings placed in various protocol slots (such as addresses and identifiers) and to perform valid comparison operations (e.g., for purposes of authentication or authorization). This document defines a framework enabling application protocols to perform the preparation, enforcement, and comparison of internationalized strings ("PRECIS") in a way that depends on the properties of Unicode code points and thus is more agile with respect to versions of Unicode. As a result, this framework provides a more sustainable approach to the handling of internationalized strings than the previous framework, known as Stringprep (RFC 3454). This document obsoletes RFC 7564.

 The Unicode Standard

 The Unicode Consortium

 Author's Address

 Fastmail

 PO Box 234, Collins St West
 Melbourne
 VIC 8007
 Australia

 neilj@fastmailteam.com
 https://www.fastmail.com

