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Heat transfer modeling in Elmer

When solving for the fluid flow for velocity ~v and pressure p Elmer can
account for a large number of different phenomena

Steady-state flow problems (assuming that steady-state solution
exists)

Transient flow problems

Incompressible and compresible fluid flow

Non-newtonian viscosity models

Solution in deforming domain (ALE formulation)

Different boundary conditions: given velocity (Dirichlet), traction
(Neumann), slip coefficient (Robin),. . .

For large Reynolds number turbulence models are often a necessity but
here they are omitted in this presentation. Tectonic flows often have
small Reynolds numbers.
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Navier-Stokes equation in Elmer

The incompressible and Newtoanin fluid the Navier-Stokes equation
yields,

ρ

(
∂~u

∂t
+ (~u · ∇)~u

)
−∇ · (2µε) +∇p = ρ~g , (1)

∇ · ~u = 0. (2)

where ρ is density, µ is the viscosity, ~u is the velocity, p is the pressure
and ε the linearized strain rate tensor, i.e.

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (3)

The source term ρ~g usually represents a force due to gravity.
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Thermal incompressible flow

For thermal incompressible fluid flows we use the Boussinesq
approximation. This means that the temperature only causes an
addiotional boyancy force depending on the temperature difference

ρ = ρ0(1− β(T − T0)), (4)

where β is the volume expansion coefficient and the subscript 0 refers to
a reference state. Assuming that the gravitational acceleration ~g is the
only external force, then the force ρ0~g(1− β(T − T0)) is caused in the
fluid by temperature variations. This phenomenon is called Grashof
convection or natural convection.
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Non-newtonian viscosity models

There are several non-newtonian material models. All are functions of the
strainrate γ̇.
Power law

η =

{
η0γ̇

n−1 if γ̇ > γ̇0,

η0γ̇
n−1
0 if γ̇ ≤ γ̇0.

(5)

Carreau-Yasuda

η = η∞ + ∆η (1 + (c γ̇)y )
n−1
y , (6)

Cross

η = η∞ +
∆η

1 + c γ̇n
, (7)

Powell-Eyring

η = η∞ + ∆η
asinh(c γ̇)

c γ̇
. (8)
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Temperature development viscosity models

All the viscosity models in Elmer can be made temperature dependent.
The current choice is a temperature-dependent viscosity of the form is to
multiply the suggested viscosity

η = η0 exp(d(1/(To + T )− 1/Tr )) (9)

where d is the exponential factor, To is temperature offset (to allow
using of Celcius), and Tr the reference temperature for which the factor
becomes one.
Also other types of temperature dependent viscosity models are of course
possible using UDFs and MATC expressions.
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Navier-Stokes equation in moving mesh

For problems involving deformations the transient Navier-Stokes equation
must be solved using Arbitrary Lagrangian-Eulerian (ALE) frame of
reference.
Assume that the mesh velocity during the nonlinear iteration is ~c . Then
the convective term yields

((~u − ~c) · ∇) ~u ≈ ((~U − ~c) · ∇)~u. (10)

The additional term including the mesh velocity is the same for both
Picard iteration and Newton type of linearization schemes.
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Additional body forces

There are many additional body forces that can be accounted for

Viscous drag that could model flow through porous media

Additional body forces resulting to moving frame of reference

Coupling with electrical fields assuming that the fluid is electrically
charged

Coupling with magnetic fields assumimg that the fluid is electrically
charged
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Boundary conditions

Dirichlet boundary condition for velocity component ui is simply

ui = ubi . (11)

where value ubi can be constant or a function of time, position etc.

Normal stress may be written in the form

σn =
γ

R
− pa (12)

where γ is the surface tension coefficient, R the mean curvature and
pa the external pressure.

One may also give the force vector on a boundary directly as in

σ · ~n = ~g . (13)
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Tangential stress has the form

~στ = ∇sγ, (14)

where ∇s is the surface gradient operator. The coefficient γ may be
approximated from

γ = γ0(1− ϑ(T − T0)), (15)

where ϑ is the temperature coefficient of the surface tension and the
subscript 0 refers to a reference state. Now boundary condition for
tangential stress becomes

~στ = −ϑγ0∇sT . (16)
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