~)

The
MM -TEX

B "S'f.,'.;.'leard s Mdﬂual'_,;h'

COPynght 1991 by Mlchael Sprvak

All nghts Reserved

A rote on the
IAMS-TEX s Wizard’s Manual

At present the Wizard’s Manual is available only in this form, Zaboriously
printed on a laser printer: The manual was divided into several sections,
and for each section two . dvi files were produced, one for * rinting the
odd-numbered pages, one for the even-numbered pages.

As a result of this procedure, which was carried out fairly hastily, several
anomalies may occur, like running heads o= ctherwise blank pages, or
twc footnotes on a page both numbered 1: these anomaliss are artifacts
that do not occur when the file is handled normally.

In the unlikely event that there is sufficient interest in this Wizard’s Man-
ual to warrant publication as a book, a special rate will be given to those
who have ordered the manual in its current form.

Meanwhile, updates will be issued as bugs are discovered and corrscted,
or as new features are added.

The idea of making an index is toc horrible to contemplate——many,
many entries would probably have dozens of citations. However, s/hen
the manual seems to have reached a stable state I will provide a “scurce”
code. This will notbe a .tex file, but a sort of ASCII representatior: of
the book, so that one can use a text editor to search for anythirg.

Meanwhile, of course, please report any misprints, mistakes, omissions,
bugs, etc., either by mail,

TgXplorators
3707 'W. Alabama, Suits 450-273
Heuston, X, 77(27 U.5.A)

or by e-mail,

spivak@rice.edn

CONTENTS
Part I Preliminaries
Chapter 1. Introduction e e e
1.1 AuS-TeX Conventions e
1.2 = Constructions from. .AMS STEX o e e e e
1.3 . Changes to AVSSTEX; \ldcal: aﬁd \glb’bal ‘assignments :
Chapter 2, GemngstartedamihMMS-m e e e e e e
Chapter 3, Changes to AyS-TEX T
5131 \Err@ e '
1032 \atdsfe.. PO
33 Tests. T
3.4 Spaces after control sequence names in errormessages
85 Linebreaking e e e
3.6 \alloc@Q, \newcount®, and \newbox@ I £
87 Lists. S NS 3 §
8.8 Skipping spaces in \futurelet’s e
39 \loop e e e e e
3.10 Aléfrangals ol e e e e e e N

Chapter 4. Numbering styies P e e
Chapter 5. Printing cardinal and ordinal nwmbers A%
Chapter 6. Inbibiting éxpansion I

* Chapter 7. Invisibility -

A 1 Inv1s1b1e conss“ructtons

......................

ii Contents
Chapter 8. Special considerations for \everypar
Chapter 9. \Page« v v v v v vt e
Chapter 10. Indexing e e e
101 The.ndxfileo
©10.2 \indexproofing
. 10.3 Converting tokensto type 12
104 The \starparts@ and \windex@routines
105 Indexing v v v v e e e
10.6 Changes to the 4yS-TEXManual
107 Invisibility
10.8 Other delimiters for indexentries
10.9 - \idefineand \iabbrev. -
Part II Labels and Cross References
Chapter 11. The \label mechanism & N
11.1 Constructions that can be given {label)’s
“11.2 Restrictions v v 0 v e e e b e e e e e e -
- 11.3 Consequences of these restricdons PRIV SRS
11.4 \Initialize IR P
11.5 The questionoffonts. P
11.6 Storing (label)’s e e e e e e e e e e e
11.7 \refanditsrelatives . -i: %o v v'vie o v v e e .
118 \label v v v i e e
119 \pagelabel e e e e e e
Chapter 12. Beginning the document v
©12.1 Preliminaries” S
122 \document ‘.nL OSSO L Ve L

Conients

Chapter 13. Labels

........................

131 \label
18.2 \pagelabel
Chapter 14. Cross-Referencing
141 Preliminaries
142 \refanditsrelatives.
Chapter 15. Reading auxiliaryfiles
151 \readlax i
152 Stylefiles 0000

Part III Particular Constructions Allowing Labels
and their associates

Chapter 16. Displayed formulas
16.1 Imvisibiity
16.2 Localizinglabels
163 \tag e e
164 N\align
16.5 \alignatand \xalignat

16.6 \gather

Chapter 17. New counters

17.1 \newcounter
17.2 \usecounter

.......................

Chapter 18. Lists

18.1 Style choices
182 Counters,etc. 0 v e e e e e e
18.3 Other preliminaries
184 \list
1856 \item

.........................

...................

.........................

iv Contents

186 \runinitem@ 141
187 \inlevel« o e e e e e e e e 148
188 Noutlevel« i i e e e e e e e 144
189 \endlist e e 144
Chapter 19. \describeand \margins 148
19.1 \describe 148
192 \marginso 149
Chapter 20. \nopunct, \nospace, and \overlong 154
20.1 \nopunct, \nospace, and \overlong 154
20.2 Usingtheflags 159
Chapter2l.\demo 161
Chapter 22, \claim’s 165
221 Preliminaries v v e e e e e e e e 165
2922 \claimformat@@ v & v v v v v oo 166
22.3 Further preliminaries 168
22.4 Startingalclaim 169
22.5 Startinga\claim@c 171
22.6 Startingalclaim@q 173
227 Finishingoff o000 173
292.8 \endclaim e e e e e 175
229 \newclaim e 175
99.10 \shortenclaim v v v 181
22.11 Customizing \claim's 185
Chapter 23. Headinglevels 187
23.1 The.tocfile e e e e e e 187
23.2 Preliminaries e e e e e e e e e e e e 187
23.3 Differentlevelsof \HL. 188
23.4 The\HLconstrucdon « v v v « « .« . 188
23.5 Thel\hlcomstruction « v v v v v o v . . 195
23.6 Other elements of headinglevels 198
23.7 Writinglongtokenlists 199

Contents v

23.8 \HLtoc@and \hltoc@ 201
239 \mainfile, 207
23.10 Creating headinglevels 208
23.11 Inmitializations 211
23.12 \aftertoc@ 212
23.13 Order ofheadinglevels 213
23.14 Naming headerlevels 214
23.15 \Imitialize 221
Chapter 24. Accessing and controlling counters, styles,etc. 224
Chapter 25. Footnotes 240
25.1 Preliminaries 240
25.2 \vfootmote@ 241
25.3 Fancy footnote numbering L. 247
254 \footmark, 249
255 N\foottext 256
256 \footmote, 258

Part IV. Miscellaneous Constructions

Chapter 26. Literalmode 261
26.1 In-lineliteralmode 261
26.2 Displayed literalmode 264
26.3 Notesforthewary 266
26.4 Prohibiting pagebreaks 267
26.5 Indentation e e e e e e 268
266 TAB'S h oo e e e e e e e e e e e 268
26.7 Widowcontrol 270
26.8 Pagebreaks 0L 272
269 \Litbox 274
26.10 The generaldefinition 275
26.11 Nicersyntax 0o 281

vi Contents

Chapter 27. Literal mode in headinglevels 288
27.1 Literalmodein \HLand \h1 289
27.2 Thegeneral definitions 294

Chapter 28. Title, author, etc., in the defaultstyle 298

Chapter 29. The bibliography 301
20.1 Neite 302
29.2 Features of I4S-TEX's bibliography macros 303
29.8 Storingthefields 0. 313
29.4 Starting the bibliography macros 315
20.5 \bibinfo@ 318
29.6 Additionmalflags 320
207 \bib 321
20.8 Thebasic constraction L L. 323
29.9 \mo,\key,.... 325
29.10 Manipulating the \vbox’™es 328
29.11 Line breakingcommands 329
29.12 Adding punctuation beforeafield 332
29.13 \endbib@. 334
29.14 \endbib, \morebib, \anotherbib, and \transl 341

Chapter 30. Interfacingwith BIBTEX 345
80.1 \UseBibTeX 346
30.2 Thebibtex.texfile. 351

Chapter 31. \purge’ing and \unpurge’ing 358

Chapter 32. Packaging figures, tables, ..., with captions 363
32.1 Preliminaries 363
32.2 Staringan\island 366

32.3
324
32.5
32.6
32.7
32.8
32.9
32.10

Contents

Startinga \caption
Formattinga \caption
\ticwrite@
\Htrim@
Other accoutrements for \endisland
\endisland
\newisland

Chapter 33. An overview; placing the packaged figures, tables, ...
331 \place e e e e e
33.2 Automaticplacement L L.
333 Settngthingsup,
334 How\Aplaceworks
33.5 How the \output routineworks
336 Wheninsertionsfloat.
33.7 Whathappenstoan \Hbyw?

Chapter 34. \Aplace, \AAplaceand \Bplace
34.1 Figures, etc., within \Par...\endPar
342 \place@
343 \Aplaceand \AAplace
344 \Bplace
34.5 Changing \pagecontents
346 \breakisland@ and \printisland@
84.7 \bottomfigs@
348 \resetdimtopins@

Chapter 35. \Cplace, \Mplace,and \MXplace
851 \Place@,
3562 \Cplace@.
85.3 \Mplace@and \MXplace@
854 NendPar

Contents

Chapter 36. The \output routine: Ta-ran-ta-ra! Ta-ran-ta-ra!

36.1
36.2
36.3
36.4
36.5
36.6
36.7
36.8
36.9
36.10
36.11
36.12
36.13

Ta-ranta-ral!

\plainoutput
\pagebody
\pagecontents e e e
And wearedone!
When \box255istcosmall
Theendgame
The endgame onceagain
The endgame onceagain
The endgame onceagain
The endgame onceagain
The endgame onceagain
The endgame onceagain
Afinalwarning00

Part VI Front and Back Matter

Chapter 37, Front Matter (Table of Contents, List of Figures,

Tables,etc.)o

87.1 lamstex.stf preliminaries
37.2 Settinganentry
37.3 Further preliminaries for the table of contents
37.4 Starting the \maketoc command
37.5 Redefining \HLand\h1
37.6 \NameHLand \Namehl
877 \maketoc
37.8 Lists of Figures, Tables,etc.
379 Fini oL
Chapter 38. Back matter; theindex
38.1 Preliminaries
38.2 \LETTERand \Entry
383 \Page,etc. e

Contents
384 \Xref,etc.,
38.5 Preliminaries for double columns
386 \makeindex,
387 \combinecols@
388 \doublecolumns@.
38.9 \balancecolumns@
Chapter 39. The indexprogram
301 The.ndxfile
39.2 Theindexprogram
Part VII The Style Files
Imtroduction,
Chapter 40. The paperstyle
40.1 Basicsettings
40.2 Fontsand pointsizeso
403 The .toclevels oL
404 Setting up headinglevels
40.5 Footnotes oo
40.6 Additional “top matter” and “end matter” constructions . .
40.7 Bibliography SRS
408 \maketoc
Chapter 41. Thebookstyle
41.1 Basicsetings
412 Fontsand pointsizes L.
41.3 The .toclevels
41.4 Flushingoutfigures
41.5 \partand \chapter
41.6 \plainoutput
41.7 Other headinglevels
41.8 Footnotes

x Contents

41.9 Bibliographyo 0000 578
41.10 book.stf e e e e e 578
41.11 book.stb oo oo e 583

Chapter 42. The letterstyle 590

Part 1

Preliminaries

\.‘_,/)

Chapter 1. Introduction

This manual is intended for TEX wizards pondering the intricacies of var-
ious I4uS-TEX constructions, as well as for TEXnicians designing style files
for I4S-TEX who need more detailed information than that provided by
the I4S-TEX Style File Designers Manual. Although certain points about
TEX receive detailed explanation, many sections presuppose considerable
TgXpertise, which it would be impractical to try to provide within the scope
of this already lengthy manual.

Despite the manual’s lengthiness, the division into chapters and sections al-
lows specialized constructions used for one part of I44S-TEX to be separated
from those used in other parts. Of course, the various chapters are not com-
pletely independent, and Part I should probably be perused by everyone.

1.1. ApS-TEX Conventions. We will not be analyzing the file amstex.tex it-
self, since a detailed description of AyS-TEX is given in the file amstex.doc.
Nevertheless, certain AS-TEX conventions must be mentioned here, because
they are used throughout lamstex.tex.

First of all, AS-TEX uses the “scratch” tokens \next, \next@, \nextiie,
\nextiii@, In order to keep the number down, many definitions will,
for example, define \nextive back in terms of \next®, \nextii@, etc.

The amstex.doc file mentions the peculiar contortions that are used to
avoid difficulties that might arise when a definition has a clause like

\def\next@{ ... \mext ... }

since a previous \futurelet\next may have let \next be something that is
\outer.

In I\S-TEX, on the other hand, it is simply quite out of the question to
allow anything to be \outer. Something like \claim can’t be outer, for ex-
ample, because then things like \newpre\claim wouldn’t work. But even
something like \bye can't be \outer because it might easily occur right after
a point where I4yS-TEX has to subject the next token to some sort of test
(see the small print notes on pages 100 and 146). Consequently, although
we will continue to reserve \next as the token of choice in all \futurelet
constructions, we will finesse this whole problem by making sure that nothing
in MS-TEX is \outer.

‘g - SGhier 1. Introduction:

The only \outer things in plain TEX are the ASCII form-feed ~"L, the
\new... constructons (\newcount, \newdimen, ...), the \+ from the
\settabs construction, the \beginsection and \proclaim constructions,
and \bye. I#\S-TEX redefines ~~L, the \new... constructions, \+, and
\bye so that they are not \outer, and it makes \beginsection be unde-
fined (I40(S-TEX has its own system of “heading levels”), while Ay(S-TEX has
already made \proclaim be undefined (until a style file is read in).

It should be mentioned that although we no longer have to worry about
\next being \outer, some precautions are still in order—see page 23.

Another A4x(S-TEX convention involves constructions like
\if...\def\next@{\csa}\else\def\next@{\csb}\fi\next@

(It is assumed that the user of this manual understands why this is required
instead of simply \if...\csa\else\csb\fi whenever \csa or \csb has an
argument.)

In TUGBOAT, Volume 8, No. 2, Kabelschacht points out that this can be
replaced by

\if...\expandafter\csa\else\expandafter\csb\fi

We will call this the “K-method”; it is often used without explicit mention. (As
pointed out in the amstex.doc file, however, this method is not always valid
or practicable).

Another frequently used convention of ApS-TEX is “compressed format”.
We often have to make definitions of the form

\def\cs{\futurelet\next\cse}
\def\cs@{\ifx\next(something or other)%
\def\next@{...\cs0Q...}\else
\def\nexte{...\cs@ee...}\fi
\next@}
\def\csee{...}
\def\cs@ee{...}

But this uses up three new control sequence names, \cs@, \cs@@, and \cs@ee,
Just for this one construction. The “compressed format” uses the same names

S

1.2. Constructions from AmS-TEX 5

\next@, \nextii@, etc., over and over again, simply redefining them within
each definition:

\def\cs{)

\def\next@{\ifx\next(something or other)¥%
\def\next@{...\nextii@...}\else
\def\next@{...\nextiiie...}\fi

\next@l}Y,

\def\nextiie{...}}

\def\nextiiie{...}%

\futurelet\next\next@}

Notice that the “first” clause \futurelet\next\next@ has to be made last
(and, although it looks strange at first, it’s perfectly legitimate to have \next@
defined in terms of \next@ in this situation).

Compressed format makes things go a little slower, since \next@, etc., have
to be redefined all the time, but secems worth it, especially since it is usually
used for major formatting constructions that introduce a lot of space anyway.

AumS-TEX also uses the construction

\Invalid@\controlseq

to make \controlseq give an error message. As explained in amstex.doc,
this is recommended for any control sequences (often discovered via a
\futurelet) that function as “syntax” for other control sequences, and con-
sequently shouldn’t be encountered on their own.

1.2. Constructions from AnS-TEX. Some more specific ApS-TEX code should
also be mentioned. First of all, the code

\ifx\amstexloaded@\relax\catcode‘\@=\active
\endinput\else\let\amstexloaded@=\relax\fi

appears near the beginning of the amstex.tex file. This prevents the file
amstex.tex from being loaded twice by making \amstexloaded@ be un-
defined if amstex.tex hasn’t been loaded, but \relax if it has. This is a
necessity because of the two lines

A)

\let\ice=\/
\def\/{\unskip\ic@}

6 Chapter 1. Introduction

that occur later (compare The TEXbook, pp. 382-383).

Testing \amstexloaded@ also allows other macro packages to tell whether
amstex.tex has already been loaded, which is important for IWS-TEX, as
we will see in the next chapter.

AmS-TEX also introduces two new counters, and a new token list,

\newcount\count@@
\newcount\count@Q@@
\toksdef\toks@@=2

in addition to the counter \count@ and token list \toks@ provided by
plain.tex; these are also used in IyS-TEX (see section 3 for the choice
of 2 in the \toksdef).

Furthermore, AnS-TEX introduces the abbreviations

\def\FNe{\futurelet\next}
\def\DN@{\def\next@}
\def\DNii@{\def\nextii@}
\def\RIfM@{\relax\ifmmode}
\def\RIfMIfIe{\relax\ifmmode\ifinner}
\def\setboxz@h{\setbox\z@\hbox}
\def\wdz@{\wd\z@}

\def\boxz@{\box\ze}

These are used throughout I#\S-TEX also. When we show lamstex.tex
code, however, we will usually expand out these definitions, to make things
easier to read. Similarly, certain control sequences from plain, like \z@, \p@,
etc., will usually be expanded out for the sake of readability. Moreover, in
constructions like

\counte@s=. ..
\let\next@=\relax

and so forth, we will often add the optional = signs that are normally omitted
in the code.

We will frequendy use the AyS-TEX control sequence \eat@ defined by

\def\eato#1{}

" r
N

1.3. Changes to ApS-TEX; \local and \global assignments 7

AmS-TEX introduces the token \space@ that has been \let equal to a
space. It is often used after

\futurelet\next\foo

constructions where \foo has to do something special if the next token is a
space. In many cases, \foo must skip over that space, and then execute \goo.
The standard AxS-TEX way of doing this is with the code

\ifx\next\space@\def\next@. {\goo}\else
\def\next@.{\goo}\fi\nexte.

The . after the \next@ makes the space ‘visible’ to TEX.

As we shall see in section 3.8, I4S-TEX introduces a somewhat more eco-
nomical approach to this problem.

By the way, a case like this, where something is part of the syntax for \next@,
is one of the situations where the K-method would not work.

There are a few more ApS-TEX devices that are important in IMy,S-TEX,
but their discussion has been deferred until Chapter 3, since these devices are
actually additions intended for later versions of AyS-TEX.

1.3. Changes to AvS-TEX; \local and \global assignments. Numerous lines
of amstex.tex have been deleted in amstexl . tex because they are not used,
or are modified, by 1amstex.tex. Major changes of this sort are discussed at
the appropriate points.

There are also numerous small changes. For example, all \relaxnext@’s
have been omitted, since MyS-TEX no longer needs that device for dealing
with \outer constructions.

One change was necessary to avoid a conflict: \roman is now used in I4(S-
TEX for a numbering control sequence, whereas it previously had a different
(extremely unlikely) use in ApS-TEX, as a control sequence to be used in math
to produce a roman letter. The latter has now been changed from \roman to
\rom.

One other change should be mentioned explicitly: near the beginning of
amstexl.tex the definitions

\def\height{height}
\def\width{width}
\def\depth{depth}

8 Chapter 1. Introduction

have been inserted, so that ‘height’, ‘width’ and ‘depth’ can be replaced by
the corresponding single tokens in the specifications for various \hrules and
\vrules; these replacements save even more memory space in lamstex.tex,
where rules occur much more frequently.

Finally, I have now conscientiously adhered to The TgXbook’s recommenda-
tions (see pages 301 and 346) that assignments of variables either always be
global or always be local. In most cases, the necessary changes have been
minor (like changing some \xdef’s to \edef’s, or vice versa), but some-
what more extensive changes were required to ensure that \setboxn is
always local for n even and global for n odd; these changes occur in the
definitions of \insplit@, \rendsplit@, \lendsplit@, \lmultline@@@,
\rmultline@@@, \binrel®, \sideset®@, \r@et, \pmb@, and perhaps one
or two other places.

We will exercise comparable care regarding assignments of variables
throughout I4yS-TEX.

i’

e .

Chapter 2. Getting started with LyS-TEX

The first thing in lamstex.tex, after the copyright notice, is

\catcode‘\@=11

to make @ a letter, in order to create “private” control sequences that the
casual user cannot type, as well as to access such private control sequences
from plain.tex and amstexl.tex.

We will always adhere to the convention introduced here, using horizon-
tal lines when we print actual lamstex.tex code, as opposed to examples,
pieces of code, etc. We will often use different line breaks from the actual
lamstex.tex code, so that it will fit better on these printed pages. (It should
also be noted that when we give preliminary pieces of code we will often omit
% signs at the ends of lines, although they are meticulously added when needed
in the code itself)

Since Mp4S-TEX is not supposed to be loaded unless AyS-TEX has already
been loaded, the next code,

\ifx\amstexloaded@\relax\else
\errmessage{AmS-TeX must be loaded before LamS-TeX}\fi

produces an error message if it hasn’t—see the discussion of the code (A) on
page 5.

We will adopt a different scheme for preventing lamstex.tex from be-
ing read in twice, one that doesn’t create a new control sequence name, by
using the fact that lamstex.tex will eventually define the control sequence
\laxread@ (see page 80), while AyS-TEX makes certain that \undefined is
always undefined (see amstex.doc):

\ifx\laxread@\undefined\else\catcode‘\@=\active\endinput\fi

[Other macro packages that need to know whether or not I4\S-TEX has
been loaded can use a similar test, or, if the status of \undefined isn't clear,
they can use the test

\expandafter\ifx\csname laxread@\endcsname\relax

10 Chapter 2. Getting started with Iy,S-TEX

which is false when I444S-TEX has been loaded, but true when it hasn’t been
loaded, since the control sequence produced by \csname. . .\endcsname is
given the value \relax if it hasn't already been defined.]

Next we redefine \err@ from AyS-TEX to produce error messages saying
‘LamS-TeX error:’ instead of ‘AmS-TeX error:’

\def\err@#1{\errmessage{LamS-TeX error: #1}}

\Err@, which is \err@ with ArS-TEX’s “default help message”, will now also
produce such error messages (see section 3.1).

As indicated in section 1.1, we redefine ~~L, the \new... constructions,
\+, and \bye from plain so that they are not \outer,

\def~~L{\par}
\let\+=\tabalign
\def\newcount{\alloc@0\count\countdef\insceunt}
\def\newdimen{\alloc@i\dimen\dimendef\insc@unt}
\def\newskip{\alloc@2\skip\skipdef\inscQunt}
\def\newmuskip{\alloc@3\muskip\muskipdef\@cclvi}
\def\newbox{\alloc@4\box\chardef\insc@unt}
\let\newtoks=\relax
\def\newhelp#1#2{\newtoks#1#1\expandafter{\csname#2\endcsname}}
\def\newtoks{\alloc@5\toks\toksdef\@cclvi}
\def\newread{\alloc@6\read\chardef\sixt@@n}
\def\newwrite{\alloc@7\write\chardef\sixt@en}
\def\newfam{\alloc@8\fam\chardef\sixt@en}
\def\newlanguage{\alloc@9\language\chardef\@cclvi}
\def\newinsert#i{\global\advance\insc@unt by\m@ne

\ch@ck0\insc@unt\count

\ch@cki\insc@unt\dimen

\ch@ck2\insc@unt\skip

\ch@ck4\insc@unt\box

\allocationnumber=\insc@unt

\global\chardef#i=\allocationnumber

\wlog{\string#i=\string\insert\the\allocationnumber}}

Chapter 2. Getting started with \S-TEX 11

\def\newif#1{\count@\escapechar \escapechar\m@ne
\expandafter\expandafter\expandafter
\edef\@if#1{true}{\let\noexpand#i=\noexpand\iftrue}},
\expandafter\expandafter\expandafter
\edef\@if#i{false}{\let\noexpand#i=\noexpand\iffalse},
\@if#1{false}\escapechar\count@} % the condition starts out false

\def\bye{\par\vfill\supereject\end}

and then we

\let\beginsection=\undefined

to make \beginsection undefined (see amstex.doc).

In plain TEX, the \let\newtoks=\relax is inserted before the definition of

\newhelp so that plain.tex can be read in twice. Even though we are not
allowing lamstex.tex to be read in twice, this is still required, since we read it in
after plain.tex!

Chapter 3. Changes to AS-TEX

The next part of I4S-TEX contains various changes to ApS-TEX. Some
of the changes should, and probably eventually will, be made in AyS-TEX,
though they didn’t get included in AnmS-TEX version 2, while other changes
are relevant only for I4yS-TEX. (Further changes to AyS-TEX will be made
later, at the relevant points.)

3.1. \Err@. A\S-TEX’s definition of \Err@,

\def\Err@#i{\errhelp\defaulthelp@\errmessage{AmS-TeX error: #1}}

has been deleted in amstexl.tex, because it can obviously be shortened to

\def\Err@#1{\errhelp\defaulthelp@\erre{#1}}

3.2. \atdef@. ApS-TEX’s original mechanism for defining the active @ char-
acter can be improved considerably.
First of all, we want the active @ to mean
\futurelet\next\ate@

the problem being that we need to make this definition while @ is active

{\catcode‘\@=\active
\defe{...}

even though we want to allow @ as part of the control sequence name \ata.
Now we can easily name \at@ even when @ is active, as

\csname at\string@\endcsname

Of course, we can’t simply say

\def@{\futurelet\next\csname at\string@\endcsname}

12

S

3.2. \atdef@ 13

since @ would then simply \1et\next=a—we need to have the combination
\csname. ..\endcsname expanded out before the \futurelet\next takes
effect.

We could do this with

\def@{\def\next{\futurelet\next}\expandafter\next
\csname at\string@\endcsname}

but that’s somewhat unsatisfactory, since it requires the active @ to make a
subsidiary definition each time it is used.

Another possibility is to use the triple \expandafter trick (see The TEXbook,
page 374), which we will be using later on. But for the present problem the
simplest strategy is to use the code

\edef\next{\gdef\noexpande{\futurelet\noexpand\next
\csname at\string@\endcsname}

\next

Here the \edef makes \next mean

| \gdef l@ﬂ \futurelet|[\next|\ate}

where the boxed control sequences are not expanded out either because they
are primitives or because they are preceded by \noexpand; the \csname. ..
\endcsname is expanded out in the \edef, but the control sequence \at@
that it expands to is made equal to \relax, since \at@ hasn’t been defined
previously—so \at@ isn’t expanded further in the \edef. (Here we are using
the fact that lamstex.tex won't be read in twice [Chapter 2].)

Consequently, when we then call \next we get this \gdef. Thus, to get the
desired definition of the active @ we just need

{\catcode‘\@=\active
\edef\next{\gdef\noexpande{\futurelet\noexpand\next
\csname at\string@\endcsname}}

\next

}

14 Chapter 3. Changes to ApS-TEX

The definition of \at@ itself is now easy, with @ back as a letter. We will call
the very same routine, \at@@, when the next token is a letter, other character,
or control sequence (or active character); for any other type of token we will
call \at@@@, which will be an error message:

\def\ate{}

\ifcat\noexpand\next a\let\next@=\at@@\else
\ifcat\noexpand\nextO\let\next@=\at@@\else
\ifcat\noexpand\next\relax\let\next@=\at@@\else
\let\next@=\at@Q@\fi\fi\fi\next@}

The error message \at@Qe@ is simply

\def\at@@@{\errhelp\athelp@\err@{Invalid use of @}}

using the help message \athelp@ from AyS-TEX.
On the other hand, \at@@ (token) will simply be the control sequence

‘\(token)@at’

if it has been defined, or an error message otherwise. Here we put quotes
around \(token)@at to emphasize that it is a single control word, even when
(token) isn’t a letter; in practice, of course, such control words have to be
constructed using \csname. . .\endcsname:

\def\at@o#1{\expandafter
\ifx\csname\string#10@at\endcsname\relax
\let\next@=\at@ee
\else
\def\next@{\csname\string#10at\endcsname},
\fi
\next@}

Note that we use \string#1 so that the token #1 can be a control sequence
or active character, as well as a letter or other character.

Finally, \atde£f@, the mechanism for defining the value of the active @ on
various tokens, is the same as in AyS-TEX, except that we add a \string:

S

R

3.3, Tests 15

\def\atdef@#1{\expandafter\def\csname\string#i@at\endcsname}

There are two noteworthy things about this redefinition:

(1) The original definition of \atdef@ remains in amstexl.tex, because
it is used for

\atdef@;{...} \atdef@,{...}
\atdef@:{...} \atdef@!{...}
\atdef@?{...} \atdefe@.{...}
\atdefe-{...}

These \atdef@’s give the same results as the new \atdef@ would
give, since for these characters the \string is simply redundant—once
@ is active, @; and @: and so forth will work just as before. (The
\atdef@@\vert is irrelevant: it is deleted in amstexl.tex, and not
used in I4S-TEX.)

(2) Later in I4yS-TEX we are going to make " active. Nevertheless, Ay S-
TEX’s

\atdefQ@"

will still make the combination @" work correctly, because \string"
for " active gives the same result as ApS-TEX's " when " is not active.
Actually, we are going to give a new \atdef@" (section 8), but that will
be done before " is made active, so the same principle still applies.

3.3. Tests. AMS-TEX has the flag \ifin@, which is set only by the routine
\in@, a test to determine whether a particular token appears in any sequence;
this test, in turn, is used only by the routine \tagin@ to check for the pres-
ence of \tag in a sequence. I\S-TEX has numerous tests that are always
performed independently, so it is economical to have a single flag that will
be used by all of them; this flag will also replace \ifin@ from AyS-TEX. So
amstexl.tex deletes the line

\newif\ifin@

16 Chapter 3. Changes to ApS-TEX

and in I4S-TEX we introduce the flag

\newif\iftest@

Moreover, in amstexl.tex we also delete

\def\ine#i1#2{ . . . }
\def\tagine#1{ . . . }

while in M\4S-TEX we redefine the \tagin@ routine so that instead of using
\ifin@ it merely reproduces (an equivalent of) the definition:

\def\tagine#i{\taginefalse
\def\nexte##1\tag##2##3\nexte{\test@true
\ifx\tagin@##2\testefalse\fi}
\next@#1\tag\tagin@\next@
\tagin@false\iftest@\taginQ@true\fi}

3.4. Spaces after control sequence names in error messages. Numerous error
messages in A4rS-TEX use constructions of the form

. . \string\controlseq\space .

to get a space after the control sequence \controlseq in the error message.
However, it saves one token to instead use

. \noexpand\controlseq .

—the \noexpand prevents expansion of \controlseq in the error message,
but we still get a space after \controlseq.

This device is used throughout I4yS-TEX, and the requisite changes were
also made directly in amstexl.tex, since they were so minor.

A : E The first change occurs in the definition of \define® where

\err@{\string\define\space must be . . . }

—

592 3.4. Spaces aﬁamm#&qumiWor messages 17

is replaced by
\err@{\noexpand\define must be . . . }
The next occurs in the definition
\defineQQit1
which takes a control sequence #1 as its argument, where, for example
(A) \err@{\string#1 is already defined}
is changed to
\erre{\noexpand#iis already defined}

with no space before the ‘is’, since it will appear when the error message is given.
[amstex.tex actually has

\err@{\string#i\space is already defined}

which is unnecessary complicated, though it has the same number of tokens as (A).]
Similar replacements are made in the definitions of

\vmodeerrQi#i
\mathmodeerr@i#i
\dmatherr@#i
\nondmatherr@i#i
\onlydmatherr@ii
\nonmatherrei#i
\nonvmodeerr@#i
\textonlyfontQ#1#2

Finally, in the definition of \boldkey (which is actually redefined in lamstex . tex—
see page 31) the

\Err@{\string\boldkey\space can’t ...}
is replaced by

\Err@{\noexpand\boldkey can’t ...}

18 Chapter 3. Changes to ApS-TEX

with a similar change for \boldsymbol.
Note, by the way, that these substitutions cannot be made in

\newhelp\athelp
\newhelp\defahelp

which end up putting things inside \csname. . . \endcsname.

3.5. Line breaking. The original AyS-TEX definition of \nolinebreak had an
extra element \refskip@, which was initially \relax, but which was changed
for the bibliography. In version 2, that aspect of the bibliography macros
(sections 29.8 and 29.11), as well as the indexing macros (section 38.3), has
been improved. Consequently, the four control sequences

\nolinebreak
\allowlinebreak
\linebreak
\newline

will all have something added; it will suffice to add the same thing, which we
will call \1kerns@, to the first three, and something that we will call \nkerns@
to the fourth; like the old \refskip@, these are both initially \relax. The
definitions of these four line-breaking macros are deleted in amstex . tex, and
we now add the new definitions. They differ from the original definitions (see
amstex.doc) in the inclusion of \1kerns@ and \nkerns@; however, these do
not occur in quite the place that \refskip@ occurred in the original definition
of \nolinebreak—that was, in fact, incorrect. We have also simplified the def-
inition of \newline—as indicated in amstex.doc, the case of \newline\par
really isn’t worth worrying about.

\let\lkerns@=\relax

\def\nolinebreak{\relax
\ifmathmode®@
\mathmodeerr@\nolinebreak\else

N

3.6. \alloc@@, \newcount@, and \newbox@ 19

\ifhmode

\saveskip@=\lastskip \unskip

\nobreak

\ifdim\saveskip@ > Opt \hskip\saveskip@\fi

\lkerns@
\else\vmodeerr@\nolinebreak\fi\fi}
\def\allowlinebreak{\relax
\ifmathmode@

\mathmodeerr@\allowlinebreak\else
\ifhmode

\saveskip@=\lastskip \unskip

\allowbreak

\ifdim\saveskip@ > Opt \hskip\saveskip@\fi

\lkerns@
\else\vmodeerr@\allowlinebreak\fi\fi}
\def\linebreak{\relax

\ifmathmode

\mathmodeerr@\linebreak\else
\ifhmode

\unskip\unkern\break\lkerns@
\else\vmodeerr@\linebreak\fi\fi}

\let\nkerns@=\relax

\def\newline{\relax
\ifmathmode
\mathmodeerr@\newline\else
\ifhmode
\unskip\unkern\null\hfill\break\nkerns@
\else\vmodeerr@\newline\fi\fi}},

3.6. \alloc@@, \newcount@, and \newbox@ Near the beginning of ApS-
TeX, \alloc@ is redefined so that it doesn’t write anything to the .log file,
while the original definition is reinstated at the end. This means that the
\new... constructions used to create new counters, (dimen) registers, etc.,
within the file do not write anything to the .1log file.

20 Chapter 3. Changes to ApS-TEX

After redefining \alloc®, AyS-TEX also uses

\let\alloce@=\alloc@

to make \alloc@@ that version of \alloc@, even if called after \alloc@ has
been redefined at the end. In the definition of \1loadmsam, for example, the
code

\alloc@@8\fam\chardef\sixt@en\msafam

functions as a replacement for \newfam\msafam; this not only gets around
the problem that \newfam is still \outer in AyS-TEX, it also ensures that
nothing gets written to the . log file even if \1oadmsam is used after \alloc@
is restored to its old definition.

In the definition of \accentedsymbol, however, a non-outer \newbox is
needed, because it appears in a construction like

\expandafter\newbox\csname ... \endcsname

where we can’t simply use the code for \newbox. So amstex.tex used
\newbox@ as a non-outer version of \newbox. However, the AyrS-TEX defi-
nition,

\def\newbox@{\alloc@4\box\chardef\insc@unt}

because it used \alloc@ rather than \alloc@@, wasn't really the right choice
anyway.

In I4uS-TEX we rectify this situation. First of all, the definitions of
\newbox@ and \accentedsymbol are deleted in amstexl.tex. Then in
lamstex.tex, we

\def\newbox@{\alloc@@4\box\chardef\insc@unt}

and also, for later use,

\def\newcount@{\alloc@@0\count\countdef\insc@unt}

RNy

3.7. Lists 21

Then we redefine \accentedsymbol using \newbox@. In addition, the
combination

\expandafter\eat@\string

in the definition is replaced by \exstring@, since we will introduce this as an
abbreviation for that combination later (section 17.1) (we also take the oppor-
tunity to eliminate two unnecessary \expandafter’s from the original code):

\def\accentedsymbol#1#2{\expandafter
\newbox@\csname\exstring@#1@box\endcsname
\setbox\csname\exstring@#1@box\endcsname

=\hbox{$\meth#2$}
\define#1{\copy\csname\exstring@#1i@box\endcsname{}}}

3.7. Lists. ApS-TEX has two lists, \alloclist@, and \fontlist@, of the
type introduced in The TgXbook, page 378, and it defines \rightappend@,
which is like \rightappenditem from that page.

\alloclist@ is maintained for the \showallocations command, which
is really only for the use of TEXnicians, and MyS-TEX dispenses with this
feature, in order to save space; consequently, in amstexl.tex all material
related to \alloclist@ is deleted.

\fontlist@ is used for the \syntax command, which S-TEX retains,
but for this list of control sequence names it is more efficient to use a list of
the type described on page 379 of The TEXbook:

\\\name;\\\names. ..

Several other lists of this sort will be used in I4(S-TEX; in some cases, we will
even have a list of the form _ _ ____ ... , where _ _ _ are not control
sequence names.

In I4S-TEX we will still be using \rightappend@ on occasion, but we will

also define the routine \rightadd@#1\to#2 to add #1 to one of these simpler
lists #2:

\def\rightadd@#1\to#2{\toks@={\\#1}\toks@@e=\expandafter{#2}}
\xdef#2{\the\toks@@\the\toks@}},
\toks@={}\toksee={}}

292 Chapter 3. Changes to ApS-TEX

In amstexl.tex, the definition of \fontlista@ is deleted, and in IS-TEX
we instead define \fontlist@ to be a lList of this simpler sort:

\def\fontlist@{\\\tenrm\\\sevenrm\\\fiverm\\\teni\\\seveni
\\\fiveil\\tensy\\\sevensy\\\fivesy\\\tenex\\\tenbf
\\\sevenbf\\\fivebf\\\tensi\\\tenit}

Similarly, the definition of \font@ is deleted in amstexl.tex and replaced
in I#4S-TEX by

\def\font@#1=#2 {\rightadde#i\to\fontlist@\font#i=#2 }

(Although \font@ appears in amstexl.tex, it occurs only within other defi-
nitions, so the definition can be deferred to lamstex.tex.)

Although, as mentioned in section 3, the test \ifin@ has been deleted in
amstexl.tex, for a list #1 of control sequences,

\\\name; \\\names. ..

we will need another (simpler) test to determine whether a control sequence
#2 is in the list. Basically we want to use

\def\ismember@#1#2{\test@false\let\next@=#2y,
{\def\\##1{\let\nextii@=##1\ifx\nextii@\next@\global\test@true\fi}#1}}

But since we normally set the flag \iftest@ only locally, we don’t want to use
a \global\test@true in this one situation (compare section 1.8). So instead
we will use a new scratch token, \Next@, for which we will always use \global
assignments. In addition, there are two further details that we will explore in
a moment:

\def\ismember@# 1#2{| \global\let\NextQ=F |\let\next@2'/.
{\def\\##1{\let\nextii0=##1\ifx\nextii@\next@
[\global\let\Next@=T\fil}#1}

\test@false\ifx\NextQ@ T\test@true\fi|l\let\next@=\relax|}

‘M«“../

R

3.7. Lists 23

This test may compared with the test on page 379 of The TEXbook. Using
\let\next@ instead of \def\next@ allows the test

\ismember@#1i\next

to be used after \next has been \let equal to some control sequence by a
\futurelet, which will be important in section 7.2 (on some occasions we
will also be using \ismember@#1#2 when #2 is an explicit argument). But
two precautions are then in order:

e Although actual 1amstex.tex code usually omits = signs after \let’s,
in the above code we need both the boxed = sign and the space afier
it! Reason: Our \futurelet may have \let\next be a space token,
which is thus a (space token) in the notation of The TEXbook, page 269.
According to the syntax rule on page 277, one such space (but only
one) will be ignored after the = sign; if we simply had

\let\next@=#2{\def\\ ...

then the (space token) #2 would be ignored, and \next@ would end
up being the {, which would then disappear, causing infinite confusion
later on.

e Another important precaution is the \1et\next@=\relax at the end.
That is needed because the \futurelet\next may have \let\next
equal something equivalent to \iftrue or \iffalse, so that \next@
would then also be equal to \iftrue or \iffalse. If that situation
were allowed to continue, havoc might ensue the next time we used a
macro containing \next@ within it.

As an example of this latter phenomenon, note that the original plain TEX
definitions

{\catcode‘\’=\active \gdef’{"\bgroup\prime@s}}

\def\prim@s{\prime\futurelet\next\primémes}

\def\pr@m0s{\ifx’ \next\let\next\preees \else\ifx"\next\let\next\preoet
\else\let\next\egroup\fi\fi\next}

24 Chapter 3. Changes to AnS-TEX

later had to be modified by changing \pr@m@s to

\def\prem@s{\ifx’\next\let\nxt\pr@ees \else\ifx"\next\let\nxt\preeet
\else\let\nxt\egroup\fi\fi\nxt}

For example, we might have

$a’\iffirstset x\else y \fi$

where \iffirstset is some user-defined construction, and then the
\futurelet\next in \prim@s would \let\next=\iffirstset. Note that
the appearance of \next after an \ifx test causes no problem, but its appear-
ance within an \if... clause, even following a \let or \def, would make
things go haywire. Similarly, in the definition of \ismember@, the \next@
appears in safe places.

To avoid such problems in general, after any \futurelet we will use only
the token \next, and otherwise \next will not appear in any macros except
after \ifx tests (or \ifcat tests). One definition in amstex.tex requires
modification to adhere to this rule: the definition

\gdef\comment@@Q#1\comment@0e{\ifx\next\comment@0@\let\next\comment@
\else\def\next{\oldcodes@\endlinechar=*\""M\relax}!,
\fi\next}

has been changed in amstexl.tex to

\gdef\comment@Qe#1\comment@Q@{\ifx\next\comment0@@@\let\next@\comment@
\else\def\next@{\oldcodes@\endlinechar=*‘\""M\relax},
\fi\next@}

3.8. Skipping spaces in \futurelet’. On page 7 we mentioned AyS-TEX’s
device for skipping over space tokens in \futurelet constructions. Instead
of using this device directly, which requires somewhat long definitions each
time, I4,,S-TEX uses a special “futurelet-next-skipping-spaces” construction

\FNSse\foo

3.8. Skipping spaces in \futurelet’s 25

which is like \futurelet\next\foo, except that any space tokens after
\foo will be discarded, and \foo will be applied after \next has been \1let
equal to the first non-space token after \foo. \FNSS@#1 begins by storing
#1 in \FNSS@@, and then applies a \futurelet\next construction, calling
\FNSS@@@, which then does the checking for a space:

\def\FNSS@#1{\let\FNSS@e=#1\futurelet\next\FNSSQEQ}

\def\FNSS@ee{\ifx\next\space@
\def\FNSsS@eeee. {\futurelet\next\FNSS@@Q@}\else
\def\FNSseeee.{\FNSSee}\fi
\FNSseeee.}

Thus, when \next happens to be a space, we swallow the space and call the
routine \futurelet\next\FNSS@QQ again, to get the next non-space token;

when we do get a non-space token, we simply apply \FNSS@@, the argument
of \FN3s@.

The ApmS-TEX \atdef@" (see amstex.doc) is deleted from amstexl.tex,
because it can be shortened if we use this \FNSS@ to get the first non-space
token after @":

\atdef@"{\unskip

\def\next@{\ifx\next‘\def\next@‘{\futurelet\next\nextii@}y,
\else\ifx\next\lg\def\next@\lg{\futurelet\next\nextii@}}
\else\def\nexto###i#1{\futurelet\next\nextiii@}\fi\fi
\next@}y,

\def\nextii@{\ifx\next‘\def\next@‘{\sldie**}Y
\else\ifx\next\lq\def\next@\1lq{\sld1ie‘‘}Y
\else\def\next@{\dlsl1e@‘}\fi\fi\next@}y,

\def\nextiii@{\ifx\next’\def\next@’ {\srdre’’}
\else\ifx\next\rq\def\next@\rq{\srdre’’}},
\else\def\next@{\drsr@’}\fi\fi\next@}y,

\FNSS@\next@}

[In our definition of \FNSS@@@ we used a new control sequence \FNSS@QQQ
instead of using a scratch token like \next@ to allow the use of \FNSS@ in
such “compressed format” definitions.]

26 Chapter 3. Changes to ApS-TEX

There is only one other definition in AnS-TEX that is (deleted from
amstexl.tex and) shortened using \FNSS@:

\def\root{/
\def\next@{\ifx\next\uproot\let\next@=\nextii@\else
\ifx\next\leftroot\let\next@=\nextiii@\else
\let\next@=\plainroot@\fi\fi\next@}
\def\nextii@\uproot##i{\uproot@##i\relax\FNSS@\nextivel}},
\def\nextive{\ifx\next\leftroot\let\next@=\nextve\else
\let\next@=\plainroot@\fi\next@}}
\def\nextve@\leftroot##i{\leftrootQ##i\relax\plainroot@l}y,
\def\nextiii@\leftroot##1{\leftrootQ##i\relax
\FNSS@\nextvi@l},
\def\nextvie{\ifx\next\uproot\let\next@=\nextvii@\else
\let\next@=\plainroot@\fi\nexte}),
\def\nextvii@\uproot##i{\uprootQ##i\relax\plainroot@}y,
\bgroup\uproot@\ze\leftroot@\z@
\FNSS@\next@}

However, there are numerous places in I44S-TEX where the use of \FNSS@
will similarly save space, definitely make the extra tokens used for \FNSS@
worth while. Note, moreover, that the above definition of \root not only
saves space, but also avoids introducing the scratch tokens \nextviii@ and
\nextix@ that occur in the original definition, but which occur nowhere else

in ApS-TEX.

3.9. \loop. The same article that introduced the “K-method” (page 4) also
introduced a new definition of plain TEX’s \loop. ..\repeat mechanism,
which we will use in I S-TEX:

\def\loopi#i\repeat{}
\def\iterate{#1\relax\expandafter\iterate\fi}
\iterate\let\iterate=\relax}

This has the property that it allows constructions like

\loop ___ \if... ___ \else ___ \repeat

3.9. \loop 27

where we repeat when the \if... test is false rather than true, which will
turn out to be useful at several points in MyS-TEX.!

Corresponding to this redefinition of \1loop, we add a new definition of
\gloop@ (which is used by the \cfrac construction):

\def\gloop@#1i\repeat{},
\gdef\iterate@{#1\relax\expandafter\iterate@\fil}},
\iterate@\global\let\iterate@=\relax}

The main purpose of redefining \gloop@ is so that it will use \iterate@
rather than \iterate, so that \iterate will only be given a local definition,
not both a local and a global one (compare section 1.3).

In amstexl.tex we delete the line

\newif\ifbadans@

and the definition of \printoptions, because we can define \printoptions
in terms of \iftest@ (section 3). We've deferred this redefinition until now
because it is also a little bit more convenient to use this alternative \1oop test:

\def\printoptions{\We{Do you want S(yntax check),
G(alleys) or P(ages)?"~JType S, G or P, follow by
<return>: }%
\loop
\read -1 to\ans@
\edef\next@{\def\noexpand\Anse{\ans@}}Y,
\uppercase\expandafter{\next@}/,
\ifx\Ans@\S@\global\test@true\syntax\else
\ifx\Ans@\G@\global\test@true\galleys\else
\ifx\Ans@\P@\global\testQtrue\else
\global\test@false\fi\fi\fi
\iftest@
\else
\We{Type S, G or P, follow by <return>: }¥
\repeat}

1 The alternative is to use \if... \test@false \else \test@itrue \fi \iftest@
\repeat.

28 Chapter 3. Changes to ApS-TEX

3.10. A ld frangais. Finally, certain changes are made to amstex.tex to ac-
commodate French styles that make some or all of ; and : and ! and ? into
active characters. In this case, various AuS-TEX macros that involve tests like

\ifx\next!

need to be changed.!

Our goal is to allow all necessary changes to be indicated in a reasonably
short file, say french.tex, which can be read in afler lamstex.tex (so that
it can be loaded on top of a I4S-TEX format file).

The most reasonable approach is to have certain control sequences that
have been \1let equal to the active punctuation symbols, so that we can use
these in an \ifx\next... test. Of course, this can only be done after the
active punctuation symbols have been defined, not in amstexl.tex. To get
around this problem, we will insist that the definition of the active punctuation
symbols in french. tex are not made with an ordinary \de£, but with a special
\APdef, which will manage things properly for us.

For the control sequences that will be \1let equal to the active punctuation
symbols we will use the following control words (which have to be created
using \csname. ..\endcsname): ‘\A@;’ and ‘\A4@:’ and ‘\A@?’ and ‘\AQ@!’.
We begin by assigning the non-active characters as defaunlt values:

\expandafter\let\csname A@;\endcsname=;
\expandafter\let\csname AQ:\endcsname=:
\expandafter\let\csname A@?\endcsname=?
\expandafter\let\csname AQ!\endcsname=!

‘When

\APdef:{ ... }

!In addition, in lamstex.tex we have the problem that certain control sequences, notably those
for commutative diagrams and tables, use certain punctuation as part of their syntax. For exam-
ple, the \ds option for arrows in a commutative diagram is typed in the form \ds{(h;v) (see
page 155 of the 14S-TEX Manual), If we make a definition like \def\ds (#1;#2){...}, then
TEX incorporates a type 12 ; as part of the syntax for \ds. So in a document where ; is active,
the ; that the user types will not be recognized as the proper syntax element. The devices for
handling this problem will be discussed at the appropriate time (in Volume 2).

3.10. A ld frangais 29

appears in french.tex, we want to (1) \def:{ ... }and (2) \let‘\4Q:'=:
(here, as on page 14, we put quotes around \AQ: to emphasize that it is a
single control word; in actual code something like

\expandafter\let\csname A@\string:\endcsname=:

will be needed).
To achieve this, we use

\def\APdef#1{\def\next@{\expandafter
\let\csname AQ\string#i\endcsname=#1},
\afterassignment\next@\def#1}

Thus, for example, \APdef: defines \next@ to mean
\let\A@:'=:

and after the assignment \def :, which swallows the following { ... }, we
perform \next@, so that ‘\A@:’ has now been \let equal to the active :

So, we can produce control sequences that have the value of each active
punctuation symbol that may occur in a file, assuming that \APdef has always
been used in french.tex.

Now consider the original AuS-TEX definition

\def\tdotse{\unskip

\def\next@{$\m@th\mathinner{\1ldotp\ldotp\ldotp}\,
\ifx\next,\,$\else\ifx\next.\,$\else
\ifx\next;\,$\else
\ifx\next:\,$\else
\ifx\next?\,$\else
\ifx\next!\,$\else
$ \ELi\EI\FI\Fi\Fi\fi}¥

\ \futurelet\next\next@}

We want to supplement this with \ifx\next tests that check whether \next
is an active punctuation symbol, in case \tdots@ gets used in a file where that
is the case. We can do this with tests like

\expandafter\ifx\csname A@\string;\endcsname\next

30 Chapter 3. Changes to ApS-TEX

For greater flexibility, when we encounter an active punctuation symbol we
will not necessarily insert the extra \, that the non-active symbol gets; we will
instead insert \fextra@, which by default is

\let\fextra@=\,

(but which french.tex can redefine, if desired).
The original definition of \tdots@ is deleted from amstexl.tex, and a
new definition is given in lamstex.tex:

\def\tdots@{\unskip
\def\next@{$\m@th\mathinner{\ldotp\ldotp\ldotp}\,
\ifx\next,\,$\else\ifx\next.\,$\else
\ifx\next;\,$\else
I}expandafter\ifx\csname A@\string;\endcsname\next|
[\fextra@$\else|
\ifx\next:\,$\else
[\expandafter\ifx\csname A@\string:\endcsname\next|
[\fextra@$\else|
\ifx\next?\,$\else
[}expandafter\ifx\csname A@\string?\endcsname\next|
[\fextrae$\else|
\ifx\next!\,$\else
|\expandafter\ifx\csname A@\string!\endcsname\next|
[\fextra@$\else|
$ \EINEINEINFINEINFI\FANEINEI\EL Y
\ \futurelet\next\next@}

Similarly, the definition of \extrap@ is deleted from amstexl.tex, and in
lamstex.tex we add

\def\extrape#i{}

\ifx\next,\def\nexte{#1i\,}\else
\ifx\next;\def\nexte{#1\,}\else
I}gxpandafter\ifx\csname A@\string;\endcsname\next]

|\def\next@{#1\fextrae}\e